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ABSTRACT

Phase Coherent Electron Transport in Carbon Nanotube Devices

Zhengfan Zhang

The electrical properties of multiwalled carbon nanotubes have been studied by transport

measurements. The devices were fabricated by e-beam lithography after carefully locat-

ing the nanotubes on silicon/silicon oxide substrates. Low contact resistances have been

achieved by plasma etch prior to metal deposition. Measurements were carried out at low

temperature using a 3He refrigerator or a dilution refrigerator to study the phase coherent

electron transport in the nanotube devices.

The four-terminal differential resistance dV/dI has been measured as a function of various

parameters such as dc bias current Idc, gate voltage Vg, temperature T and magnetic field

B. The devices we measured show large sample to sample variations. Even in the same

sample, the characteristics change with thermal cycling and/or time. Asymmetric features

with respect to dc bias current (voltage) have been found in these nanotube devices that can

be well explained by Fano resonances, a natural consequence of interference effects between

direct and resonant transmission. The sample specific behavior and metastability suggests

defects or impurities play an important role in nanotube electron transport. Simultaneous
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measurements of the contact resistances show correlation between the nanotube conductance

and the metal-nanotube contact conductance. These results give us some insights into the

influence of the defects or impurities on the conductance of the whole nanotube device.

However, the exact locations of the defects or impurities cannot be determined due to non-

local effects. The sample phase coherence length has been deduced from magnetic field

dependent measurements.

To explain the behavior we observed in the multiwalled carbon nanotube devices, we

proposed a model which explains the origin of the direct transmission and the transmission

through a resonant state. This model also offers an explanation of the controversies arising

from previous measurements of the multiwalled carbon nanotubes.
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CHAPTER I

Introduction

As technology advances, there is a constant trend of scaling down for the microelectronics

industry. This continuous scaling down depends on the improvement of lithography tech-

niques. At present, the lithography technique is primarily by photolithography which is lim-

ited by the light wavelength. Extreme ultra violet (EUV) lithography is under development

and is expected to be deployed for commercial usage by Intel in 2009 [1]. Other techniques

such as X-ray lithography, electron beam lithography, ion-beam lithography, scanning probe

lithography, imprint lithography are also available [2], but they have their own limitations

and have not been adapted by the mainstream of the semiconductor industry. For example,

electron beam lithography is widely used in research laboratories, however, it is not suit-

able for industry usage because the exposure speed is slow and the cost is high. Projection

electron beam lithography is being developed to overcome this problem but it faces other

technical challenges such as low throughput. Nanoimprint lithography is currently being

developed and is promising for cheap, large scale and high throughput production with high

resolution [3]. However, there are technical difficulties with regard to overlay and defects,

i.e., due to the fact that direct contact is involved, the overlay error and the defect number

and size is larger than optical-based lithography which projects the pattern from a distance.

Besides current technical difficulties, this approach is very different from the current optical-

based lithography techniques so that it creates an additional barrier for its acceptance by
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the industry. Its future in microelectronics is still uncertain. All these approaches are known

as “top-down” approaches as they start from bulk materials and fabricate nanostructures

by a lithography process together with pattern transfer techniques such as wet etch, dry

etch and/or thin film deposition, etc.. The advantage of the “top-down” approach is that

this approach is easy for device integration, highly reliable and compatible with the cur-

rent semiconductor fabrication process. The main disadvantage is the resolution is limited

by the lithography process and the equipment is very expensive with each production line

costing millions or billions of dollars. There is also the so called “bottom-up” approach.

In the “bottom-up” approach, the nanostructure is fabricated using self assembly mostly

by chemical methods. The advantage is the pattern can be very small and the process is

highly parallel. There are different schemes for this “bottom up” approach. Molecular elec-

tronics, which uses single molecules as electronic devices, has been proposed as the ultimate

technology. This has been foreseen by R. Feynman in 1959 [4], although the experimental

realization was not achieved until recently [5]. In this approach, individual molecules in the

circuit function as switches, storage devices, etc.. However, as individual molecules are very

small, it is an extremely challenging task to connect them to macroscopic devices although

significant progress has been made in this area [6,7]. This highlights the difficulties faced

by the “bottom up” approach: device integration is very difficult. It is speculated that a

combination of both approaches is very likely to be the solution: the “bottom up” approach

synthesizes small structures while the “top down” approach integrates those structures and

connects them to the macroscopic outside world (e.g. see Ref. [8]).
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Carbon nanotubes (CNTs) are long molecules with a diameter of only one or a few

nanometers, so they have at least one dimension that is too small to achieve by the traditional

lithographic process, but they are easier to manipulate than individual molecules as they are

long. CNT devices serve as a bridge from the traditional solid state devices to revolutionary

molecular devices. The fact that CNTs can be either metallic or semiconducting depending

on their chirality makes them very interesting and suitable as the basis for a variety of

nanoelectronic devices. The most challenging problem of the CNT electronics is that the

synthesis of CNTs is still not fully controllable and this lack of control brings severe problems

for device integration [9].

Even though limited by the lack of control in the synthesis process, CNTs remain attrac-

tive to many researchers as they have been shown to have excellent electronic, mechanical,

thermal and electrochemical properties [9]. As they can sustain a very high density of cur-

rent [10], be ballistic conductors [11], have high mobility for semiconducting CNTs [12],

have high mechanical strength [13], be chemically functional and conduct heat very effi-

ciently [14], they have been regarded as one of the promising candidates for the building

blocks of nanoelectronics despite the challenges discussed in the previous paragraph. CNT

field effect transistors (FETs) [15–18], CNT p-n junction diodes [19], logic NOR gates [20],

complementary metal-oxide semiconductor (CMOS) inverters (logic NOT gates) [21], and

memory devices [22] have been fabricated. Very recently, a CNT ring oscillator consisting of

five CMOS CNT inverters has been fabricated by scientists from IBM [23]. There are many

other possible applications for CNTs as discussed in Ref. [9] in addition to nanoelectronics.
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For example, CNTs can be used as material strengtheners, field emitters, thermal sinks and

ion storage for batteries, etc..

Besides their great potentials for industrial applications, CNTs are also interesting from

a scientific point of view. They are interesting to both solid state physicists and quantum

chemists. From the point of view of solid state physics, the free electron wave extends to the

whole crystal in perfect periodic potentials, which is known as Bloch’s theorem [24]. Defects

or impurities, phonons and surface boundaries, etc., cause scattering of the electrons, which

is the origin of resistance. On the other hand, quantum chemistry starts from an electron

wave localized around an atom, then constructs valence bonds or molecular orbitals when

atoms get close to each other to form molecules. The electrons can then move around and

conduct current. CNTs provide a common “play ground” for scientists from both disciplines.

As will be discussed in Chapter 2, experiments on CNTs showed amazing agreement with

theories with symmetry analysis. Therefore CNTs also provide a testing stage for various

theories. For example, a single-walled carbon nanotube (SWCNT) is considered to be the

ideal model for 1D electron transport where Luttinger liquid behavior has been speculated

to exist [25].

This keen interest is reflected in the numbers of papers published each year as shown

in Fig. 1.1. The numbers almost keep exponentially increasing for both general research

on CNTs and research related to CNT electronic devices. Similarly, general research on

nanoscience and nanotechnology is also rapidly increasing compared with other traditional

physics areas such as mesoscopic physics and superconductivity. This boom of publications
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Figure 1.1. (Color) The numbers of published papers on the subject of carbon
nanotubes and carbon nanotube devices from 1992-2005. For comparison, the
numbers of papers on the subject of mesoscopic physics, superconductivity
and nanoscience/nanotechnology are also shown. (Data obtained by keyword
search from Web of Science. )
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shows the exciting and breathtaking advances in this field. In this thesis, we will demonstrate

our exploration of this field of transport measurements of CNT devices.

This thesis is organized as follows. In the next chapter we will give a short review

of the electronic band structure of CNTs and an introduction to mesoscopic physics with

quantum transport theory. A short literature survey of the experiments regarding electronic

transport done by other researchers will be given in the same chapter. This is then followed

by our sample fabrication procedures and transport measurement techniques in Chapter 3.

In Chapter 4, the transport properties of multiwalled nanotubes (MWNTs) with normal

metal contacts, sample specific behavior with regard to the contact resistances, and phase-

coherent interference effects will be discussed. Finally, a summary and outlook for future

work will be given at the end.
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CHAPTER II

Overview of Carbon Nanotube Physics

Research on CNTs is multidisciplinary in nature. It is a collaborative study involving

physicists, electrical engineers, chemists, materials scientists and mechanical engineers. Gen-

erally, CNTs can be in the form of an individual SWCNT, a SWCNT rope, a MWNT or a

MWNT rope. A SWCNT can be described as a graphene sheet rolled into a cylindrical shape

so that the structure is one dimensional. A MWNT is multiple layers of graphite rolled into

concentric cylinders. A SWCNT rope is multiple SWCNTs packed parallel to each other

forming a bundle and a MWNT rope consists of an array of parallel packed MWNTs. Figure

2.1 shows the difference between individual SWCNT, individual MWNT, SWCNT rope and

MWNT rope.

A brief overview of physics involved in the present research will be give in this chapter.

The CNT electronic band structure will be discussed first. It is remarkable that so many im-

portant results can be obtained elegantly by symmetry analysis. An overview of mesoscopic

physics centering on quantum transport will then be given. Finally, a brief review of exper-

iments on CNT electronic transport is provided. A number of numerical simulation results

will also be presented for a more illustrative way to understand the underlying physics1.

1All simulations in this thesis were performed by the author.
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2.1. Electronic Structure of Carbon Nanotubes

2.1.1. Tight binding calculation of graphene band structure

As a SWCNT can be thought of as a graphene sheet rolled into a cylinder, the sim-

plest theoretical approach is to start from the tight binding calculation of two-dimensional

graphene. Then one incorporates the periodic boundary condition introduced in forming a

cylinder. This technique is often referred to as the Brillouin Zone folding of energy disper-

sion relations [26]. For a unit cell of graphene as shown in Fig. 2.2(a), the hexagonal basis

vectors are

a1 = (

√
3

2
a,

a

2
), (2.1a)

a2 = (

√
3

2
a,−a

2
), (2.1b)

where a=2.46 Å is the lattice constant. The reciprocal lattice is then

b1 = (
2π√
3a

,
2π

a
), (2.2a)

b2 = (
2π√
3a

,−2π

a
). (2.2b)

The reciprocal lattice is shown in Fig. 2.2(b). The high symmetry points are marked as Γ,

M, and K.
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Figure 2.1. (Color) (a) STM image showing a SWCNT, (b) SEM image show-
ing a MWNT, (c) TEM image showing a SWNT rope, (d) SEM image of an
array of MWNTs. Adapted from Ref. [9].

Figure 2.2. (Color) (a) The lattice structure of graphene. (b) k in reciprocal
space. The unit cell of two dimensional graphene is shown as the dotted
rhombus in (a). Brillouin zone of graphene is shown as the blue hexagon
in (b). a1(2), b1(2) are unit cell lattice vectors and reciprocal lattice vectors,
respectively. A and B are the two atoms in the unit cell. Γ, K are M are the
high symmetry points in the hexagonal lattice.
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The energy dispersion relation for a graphene sheet by a tight binding calculation is given

by [26,27],

Eg2D(kx, ky) = ±γ0

√
1 + 4 cos(

aky

2
) cos(

√
3akx

2
) + 4 cos2(

aky

2
), (2.3a)

= ±γ0

√
3 + 2(cos(k · a1) + cos(k · a2) + cos(k · (a1 − a2))). (2.3b)

where γ0 = 3.033 eV is the amplitude of the nearest-neighbor overlap integral.

Figure 2.3 shows the 3D representation of the graphene band structure. As the two

bonding and anti-bonding bands only touch at six points denoted by K (or K ′) and the

density of state (DOS) at the Fermi Level is zero [26], graphene is also called a zero-bandgap

semiconductor.

2.1.2. Structure of single-walled carbon nanotubes

For the graphene sheet, we can define a vector Ch for a pair of integers (n, m) as

Ch = na1 + ma2 (2.4)

as shown in Fig. 2.4, (a1, a2 are the two hexagonal basis vectors.) The translational vector

T is the unit vector of a SWCNT along the tube axis (Fig. 2.4). In the unrolled sheet, it is

perpendicular to the vector Ch (often called the Chiral vector). The unit cell of the SWCNT

is the rectangle as shown in Fig. 2.4. The number of hexagons in each unit cell is denoted

as N and the number of carbon atoms in a unit cell is 2N . The parameters that define the

SWCNTs are shown in Table 2.1.
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Figure 2.3. (Color) Three dimensional representation of the energy dispersion
relation of the π and π∗ bands of graphene band structure. Blue (red) dots
correspond to the K (K ′) points in the first Brillouin zone.

Figure 2.4. (Color) Schematics of three types of SWCNTs formed from rolling
up of a graphene sheet. OO′ is the rolling direction defines the chiral vector
Ch = na1 + ma2 ≡ (n, m). The translational vector T is along the tube axis,
thus perpendicular to the chiral vector Ch. The shaded area is the unit cell of
SWCNT before it is rolled. θ is the chiral angle. Adapted from Ref. [28].
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For some selected SWCNTs, we list the values of their parameters in Table 2.2.

The set of integers (n,m), where Ch = na1 + ma2, is used to classify the CNTs. For

n = m, i.e., (n,n), we have an armchair SWCNT. For m = 0, i.e. (n,0), we have a zigzag

SWCNT. The diameter dt of the SWCNT is determined by the length of Ch, dt = L/2π,

where L = a
√

n2 + m2 + nm is the length of Ch. All the other SWCNTs are called chiral

SWCNTs. Figure 2.4 demonstrate the three types of SWCNTs (armchair, zigzag, chiral)

that can be formed from a graphene sheet. Figure 2.5 shows the atomic configuration of

(5,5), (9,0) and (10,0) SWCNTs with the atoms in the unit cell highlighted. Two other

SWCNTs, (7,4) and (8,3), are shown in Fig. 2.6.

2.1.3. Metallic and semiconducting nanotubes

For a SWCNT with vector Ch, the boundary condition ψ(r+Ch) = ψ(r) must be satisfied.

This leads to the quantization of the electron wave vector k along the circumference of the

SWCNT.

k ·Ch = 2πq, (2.5)

where q is an integer.

Equation 2.3a can be rewritten as

Eg2D(kx, ky) = ±γ0

√
(1 + 2 cos(

aky

2
) cos(

√
3akx

2
))2 + 4 cos2(

aky

2
) sin2(

√
3akx

2
). (2.6)

2Generated by Virtual Nanolab from Atomistix A/S, Denmark.
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Table 2.1. Parameters of carbon nanotubes [26].

symbol name formula value

a length of unit vector a =
√

3aC−C = 2.49 Å, aC−C = 1.44 Å

a1, a2 unit vectors (
√

3
2

, 1
2
)a, (

√
3

2
,−1

2
)a x,y coordinate

b1, b2 reciprocal lattice vectors ( 1√
3
, 1)2π

a
, ( 1√

3
,−1)2π

a
x,y coordinate

Ch chiral vector Ch = na1 + ma2 ≡ (n, m), (0 ≤ |m| ≤ n)

L length of Ch L = |Ch| = a
√

n2 + m2 + nm
dt diameter dt = L/π

θ chiral angle sin θ =
√

3m
2
√

n2+m2+nm
, cos θ = 2n+m

2
√

n2+m2+nm
, 0 ≤ |θ| ≤ π

6

d gcd(n,m)a

dR gcd(2n + m, 2m + n)a

T translational vector T = t1a1 + t2a2 ≡ (t1, t2) gcd(t1, t2) = 1a

t1 = 2m+n
dR

, t2 = −2n+m
dR

T length of T T = |T| =
√

3L
dR

N Number of hexagons N = 2(n2+m2+nm)
dR

in the unit cell.
R symmetry vector R = pa1 + qa2 ≡ (p, q) gcd(p, q) = 1a

t1q − t2p = 1, (0 < mp− nq ≤ N)

τ pitch of R τ = (mp−nq)T
N

= MT
N

ψ rotation angle of R ψ = 2π
N

M number of T in NR. NR = Ch + MT
a gcd(n,m) denotes the greatest common divisor of the two integers n and m.

Table 2.2. Values of parameters of selected SWCNTs.

Ch (5, 5) (9, 0) (7, 4) (8, 3) (10, 0) (10, 10) (n, n) (n, 0)
d 5 9 1 1 10 10 n n
dR 15 9 3 1 10 30 3n n

dt(Å) 6.78 7.05 7.55 7.72 7.83 13.56
√

3na
π

na
π

θ 30◦ 0◦ 21.1◦ 15.3◦ 0◦ 30◦ 30◦ 0◦

L/a
√

75 9
√

93
√

97 10
√

300
√

3n n
T (1,−1) (1,−2) (5,−6) (14,−19) (1,−2) (1,−1) (1,−1) (1,−2)

T (Å) 2.46 4.26 13.7 42.0 4.26 2.46 2.46 4.26

T/a 1
√

3
√

31
√

291
√

3 1 1
√

3
N 10 18 62 194 20 20 2n 2n
R (1, 0) (1,−1) (1,−1) (3,−4) (1,−1) (1, 0) (1, 0) 1,−1
M 5 9 11 41 10 10 n n

Eg(eV ) 0 0.082 0.032 1.292 0.827 0 0 —
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Armchair
(5,5)

Zigzag
(9,0)

Zigzag
(10,0)

(a)

(b)

(c)

Figure 2.5. (Color) Atomic configuration2 of (a) (5,5) armchair, (b) (9,0)
zigzag and (c) (10,0) zigzag SWCNTs. The number of carbon atoms as in
the unit cell shown is 20, 36, 40 in (5,5), (9,0), (10,0) SWCNTs respectively.
(Note: the number of atoms is twice the number of hexagons in a unit cell.)
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(a)

Chiral
(7,4)

(b)

Chiral
(8,3)

Figure 2.6. (Color) Atomic configuration2 of (a) (7,4) chiral and (b) (8,3) chiral
SWCNTs. The number of carbon atoms in the unit cell as shown is 124, 388
in (7,4), (8,3) SWCNTs respectively. (Note: the number of atoms is twice the
number of hexagons in a unit cell.)
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(5, 5) tube

(9, 0) tube

(10, 0) tube

(a)

(b)

(c)

Figure 2.7. (Color) Diagrams for the first Brillouin zone of graphene with
periodic boundary conditions. The dashed lines represent the allowed k-vector
for (a) amchair (5,5), (b) zigzag (9,0), (c) zigzag (10,0) SWCNTs. The blue
(red) dots represent the K (K’) points.
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For a gapless dispersion relation, one must have

√
3akx

2
= 2sπ, s = 0,±1,±2, . . . (2.7a)

aky

2
= (2t + 1)π ± 1

3
π, t = 0,±1,±2, . . . (2.7b)

or

√
3akx

2
= (2s + 1)π, s = 0,±1,±2, . . . (2.7c)

aky

2
= 2tπ ± 1

3
π, t = 0,±1,±2, . . . (2.7d)

must be satisfied. From Eqns. 2.1 and 2.4, we have

Ch =

√
3

2
a(n + m)êx +

a

2
(n−m)êy. (2.8)

We put Eqn. 2.8 in the boundary condition Eqn. 2.5 and get

kx

√
3

2
a(n + m) + ky

a

2
(n−m) = 2πq. (2.9)

Equations 2.7a, 2.7b and 2.9 can be satisfied when n−m = 3l, where l is a nonzero integer.

Equations 2.7c, 2.7d and 2.9 can be satisfied when n = m. These are the conditions for

metallic SWCNTs. The same result was obtained in a geometric illustrative way in Ref. [26],

n−m = 3l, (2.10)
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where l is an integer.

We can see that any armchair CNT (n, n) will always be metallic while a zigzag or chiral

CNT could be either metallic or semiconducting.

The dispersion relations for the armchair (n, n) and zigzag (n, 0) CNTs are [26]

Earmchair(k) = ±γ0

√
1± 4 cos(

qπ

n
) cos(

ka

2
) + 4 cos2(

ka

2
), (2.11)

(−π < ka < π), (q = 1, . . . , 2n)

and

Ezigzag(k) = ±γ0

√
1± 4 cos(

√
3ka

2
) cos(

qπ

n
) + 4 cos2(

qπ

n
), (2.12)

(− π√
3

< ka <
π√
3
), (q = 1, . . . , 2n).

A more illustrative way to show this relation is through Fig. 2.7, the reciprocal for (a)

(5,5) armchair CNT, (b) (9,0) zigzag CNT, (c) (10,0) zigzag CNT. The k component k‖

that is parallel to the tube axis can be any value while the perpendicular component k⊥ is

quantized. Thus the allowed k is parallel to the CNT tube axis as shown by the dashed lines

in Fig. 2.7. We can see for an armchair CNT, k will always go through the K (K’) points

as shown in Fig. 2.7(a). For other CNTs such as (9,0) zigzag CNT in Fig. 2.7(b), k goes

through the K (K’) points while in Fig. 2.7(c), k does not go through the K (K’) points for

the (10,0) zigzag CNT.
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Near the K points, the energy can be approximated as

E(k) ≈ ±
√

3γ0a

2
|k− kK | = ~vF |k− kK |, (2.13)

with the Fermi velocity vF =
√

3aγ0

2~ = 8× 105 m/s. The DOS then can be calculated as [29]

ν(E) =
∑

all subbands

1

π

(
dE

dk

)−1

,

=
4a

π2dtγ0

∞∑
q=−∞

g(E, Eq), (2.14a)

with

g(E, Eq) =





|E|√
E2−E2

q

|E| > |Eq|

0 |E| < |Eq|,
(2.14b)

Eq = |3q − n + m| aγ0√
3dt

. (2.14c)

Equation 2.14c can be rewritten as

Eq = |q + β|2~vF

dt

, (2.14d)

where β = 0 for a metallic CNT and ±1 for a semiconducting CNT.
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For metallic SWCNTs, the DOS per unit length along the tube axis is a constant regard-

less of the diameter and chirality [30],

ν(EF ) =
8√

3πaγ0

=
4

π~vF

. (2.15)

For semiconducting SWCNTs, the band gap is inversely proportional to the tube diameter

as [26,27]3

Eg =
2γ0aC−C

dt

. (2.16)

Figure 2.8 shows the dispersion relation and the DOS for several selected SWCNTs. For

armchair SWCNTs (5,5) and (10,10), the DOS at the Fermi level is finite, so they are always

metallic. For zigzag SWCNTs (9,0) and (10,0), as Eqn. 2.10 indicates, the (9,0) CNT is

matallic and the (10,0) CNT is semiconducting.

2.1.4. Curvature effect

The calculation by Brillouin Zone folding of the graphene dispersion relation only consid-

ered the periodic boundary condition ψ(r+C) = ψ(r), but ignored the effect of curvature of

the CNT tube axis. If the tube diameter is large enough, the curvature effect can be ignored.

However, for small diameter SWCNTs, such curvature effects cannot be ignored. We illus-

trate this by a symmetry argument. As shown in Fig. 2.9, from the symmetry argument, the

distortion of the reciprocal lattice due to the curvature effects can only be along certain axes

of symmetry. Therefore k will still go through the K points for an armchair SWCNT, while

3The equation in Ref. [26] missed a factor of 2.
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Figure 2.8. Dispersion relation and DOS of (a) (5,5), (b) (10,10), (c) (9,0), (d)
(10,0), (e) (7,4), (f) (8,3) SWCNTs.
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for other n−m = 3l, l 6= 0 SWCNTs, k will miss the K points. More rigorous calculations

have shown the same result [31, 32]. The small band gap caused by the curvature effect

is [32,33],

Ec
g =

γ0a
2

4d2
r

cos 3θ, (2.17)

where θ is the chiral angle (see Table 2.1.). This curvature induced gap is inversely propor-

tional to d2
r. For an armchair SWCNT θ is 30◦ and the gap is zero. For a zigzag SWCNT,

θ = 0 and the gap is the largest among tubes of the same diameter.

After considering the curvature effect, the SWCNTs can be classified into three types.

The armchair (n,n) SWCNTs are true metallic CNTs. The SWCNTs (n,m) where n−m = 3l,

l 6= 0 are small band gap semiconductors while the rests are semiconductors. Therefore (5,5)

and (10,10) SWCNTs are metallic, (9,0) and (7,4) SWCNTs have small band gaps, and

(10,0) and (8,3) SWCNTs are semiconducting as shown in the last row of Table 2.2. For

small band gap semiconducting SWCNTs with same chiral angle θ, the band gap is inversely

proportional to the square of the tube radius Rt as given by Eqn. 2.17.

2.1.5. Single-walled carbon nanotube bundles

Due to the curvature effect, the only true metallic SWCNTs are armchair SWCNTs.

This is explained by the high symmetry of (n,n) SWCNTs. When the armchair SWCNT

forms a bundle, the symmetry is greatly reduced. Delaney et al. [34,35] calculated that for

a (10,10) SWCNT rope, a pseudogap of 0.1 eV at the Fermi energy level is caused by the

intertube interaction. Figure 2.10(a) shows a rope of (10,10) armchair SWCNTs. An isolated
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(a) (b)

∆k ∆k(c) (d)

Figure 2.9. (Color) (a) The Brillouin zone and allowed k for an armchair
nanotube ((5,5) tube shown here), (b) For a n −m = 3l (l 6= 0) tube ((9,0)
tube shown here), (c) the enlarged view of (a) at the K point. Due to the
curvature effect, the K point can move. But by a symmetry argument, it can
only shift vertically, thus the allowed k still passes through. (d) the enlarged
view of (a) at the K point. Due to the curvature effect, the K point can move.
But it shifts vertically, thus the shift can cause a mismatch for K and k.
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Figure 2.10. Psuedo gap in a (10,10) SWCNT rope caused by intertube interac-
tion. (a) Perspective view of an aligned (10,10) SWCNT rope, (b) Calculated
DOS for a (10,10) SWCNT rope with misaligned (dashed line) and aligned
CNTs (solid line). Adapted from Ref. [35].
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(10,10) SWCNT has the symmetry D20h while the hexagonal packed structure has the D6h

symmetry. The highest common symmetry is D2h. Figure 2.10(b) shows the pseudogap at

the Fermi level.

2.1.6. Multiwalled nanotubes

MWNTs have been less studied due to their complexity. The simplest case is a double-

walled carbon nanotube consisting of two concentric CNT shells. As the two coaxial CNT

shells have different diameters dt and circumferences L, in general, they will not be com-

mensurate except in some special cases4. As shown in Table 2.1 and 2.2, the length of the

translational vector T depends on the CNT chirality. T is 2.46 Å and 4.26 Å for armchair

and zigzag CNTs respectively. Figure 2.5 gives a graphical representation of the unit cells

of (5,5), (9,0) and (10,0) SWCNTs. For a random given (n,m), the unit cell can be fairly

long. (e.g. (7,4) and (8,3) SWCNTs shown in Fig. 2.6; also refer to the value of T in Table

2.2.) Armchair and zigzag CNTs will not be commensurate with each other as T = a for

armchair and T =
√

3a for zigzag CNTs. The commensurate cases are two armchair or two

zigzag CNT shells. The general case is for the two CNTs (n1, m1) and (n2, m2) satisfying

n1

n2

=
m1

m2

= r, (2.18)

where the ratio r is a rational number. Figure 2.11 shows a commensurate and an incom-

mensurate double-walled carbon nanotube. The calculation predicts that the CNT shells

4Commensurate means the ratio of the lengths of the unit cells for each shell along the tube axis is a rational
number.
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(a)

(b)

Figure 2.11. (Color) Geometric schematics2 of (a) (5,5)-(10,10) commensu-
rate CNT and (b) (10,0)-(10,10) incommensurate CNT. The unit cell in (5,5)-
(10,10) CNT is shown in (a). There is no unit cell for the incommensurate
CNT in (b).
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of a coaxial MWNT retain the basic electronic properties (i.e. remain either metallic or

semiconducting depending on their chirality) of the constituent shells even though the de-

tails of dispersion relation may be changed by the intertube interaction [36]. More recently,

electron transport in commensurate and incommensurate MWNTs has been studied theo-

retically [37,38]. Diffusive transport behavior was explained by S. Roche et al. as a result

of shells that are incommensurate [38]. However, K.H. Ahn et al. asserted that the diffu-

sive, ballistic, or intermediate between them transport can all happen in incommensurate

MWNTs. As can be seen, there is still lack of consensus about how the intra-shell interactions

affect electron transport in MWNTs.

2.2. Overview of Mesoscopic Physics

2.2.1. Introduction

CNTs have diameters of a few up to a few tens of nanometers. For systems of this size,

quantum effects and fluctuation cannot be ignored. In fact, even before the discovery of

CNTs in 1991, scientists had studied the novel properties of conductors with at least one

dimension in the nanometer scale. Conductors with dimensions on this length scale cannot

be treated as classical conductors because the dimensions of the devices L, W are small

enough to be comparable to or less than the mean free path length lm, the phase coherence

length lϕ, the thermal length lT and/or the Fermi wavelength λF . They are also too large

for the full quantum mechanical treatment as they consist of at least thousands of atoms.

This size scale is called the mesoscopic scale as it lies between the macroscopic world where

classical laws can be applied safely and the atomic world where the full quantum mechanics
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must be used. The length scales mentioned above (such as lm, lϕ, lT and λF ) are the most

important parameters in mesoscopic physics.

Mesoscopic systems demonstrate interesting basic physics. Universal conductance fluctu-

ation (UCF) [39,40] and weak localization (WL) [41] have been discovered in the diffusive

transport regime. Conductance quantization [42] and the Luttinger liquid [43,44] have been

studied in the ballistic transport regime. Quantum dots can act as artificial atoms [45] in

which the Coulomb interaction plays an important role.

A brief overview of mesoscopic physics will be given in this section. We first introduce

the various characteristic length scales in mesoscopic systems. The Landauer formula and

ballistic transport is then discussed. Basic concepts of electron-electron interaction in bal-

listic systems are given in a short survey. Diffusive transport including UCF and WL will

be discussed. We end this section by discussing Coulomb blockade in quantum dots.

2.2.2. Characteristic length scales

The Fermi wavelength λF = 2π/kF is the de Broglie wavelength of electrons at the Fermi

energy level. The Fermi wave vector kF is related to the Fermi velocity vF and Fermi energy

EF by

vF =
~kF

m
(2.19)

EF =
~2k2

F

2m
, (2.20)

where m is the effective electron mass.
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The mean free path lm is the average length that an electron travels before being scat-

tered by a scattering center. In transport, only electrons near the Fermi energy contribute,

therefore we have

lm = vF τ, (2.21)

where τ is the relaxation time.

The phase coherence length lϕ is the length scale over which an electron maintains its

phase coherence. In the ballistic regime

lϕ = vF τϕ, (2.22)

where τϕ is the phase relaxation time. In the diffusive regime the phase coherence length is

lϕ =
√

Dτϕ. (2.23)

D is the diffusion constant given by

D =
v2

F τ

d
=

vF lm
d

, (2.24)

where d is the dimensionality of the sample.

lϕ defines the length scale of interference of the wave functions of a single electron state.

However, interference can also be important for electron states that have close energies. At

nonzero temperature, thermal averaging occurs over an energy scale of kBT . Electrons with
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an energy difference of kBT lose their phase coherence after a time interval of the order of

~/kBT . This corresponds to a length scale

lT =

√
D~
kBT

, (2.25)

which is called the thermal length or the Thouless length. For a system of finite size L, we

can define an energy scale named the Thouless energy

EC =
D~
L2

. (2.26)

Two states having energies close to each other are correlated. States with energy difference

larger than EC can be regarded as independent of each other. If lT > lϕ, the dominant

dephasing properties are defined by lϕ. On the other hand, if lT < lϕ, the primary dephasing

is due to thermal excitations and lT is an important length scale for mesoscopic phenomena.

The temperature dependence of mesoscopic phenomena is defined by both lϕ and lT .

In mesoscopic systems, for 1D transport, if L À lm, the transport is in the diffusive

regime. In the ballistic regime, L ¿ lm and the electrons experience no or few scattering

events inside the conductor. The sample boundary plays an important role for scattering

instead of impurities.
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2.2.3. Ballistic transport and Landauer formula

For an ideal conductor, there is no scattering inside the conductor and the resistance

should be zero. But the resistance from the interface between the conductor and the con-

ducting pads is not zero because of the mode mismatch of the conductor and the contact

pads.

In a ballistic conductor, the electrons entering the conductor from one side will be trans-

ported to the other side without any scattering. For each subband, the net current from one

side to the other side when one applies a voltage difference V across the conductor is [46]

I =
2e

h

∫
d E(f(E − eV

2
)− f(E +

eV

2
)), (2.27)

where f(E−µ) = 1
e(E−µ)/kBT +1

is the Fermi distribution function. At zero temperature T = 0,

I =
2e2

h
V (2.28)

Therefore, the conductance of a ballistic conductor that has M subbands at zero temperature

is

G =
I

V
=

2e2

h
M. (2.29a)

The resistance is

R =
1

G
=

h

2e2

1

M
. (2.29b)

This means the conductance will be a multiple of 2e2/h and independent of length. As

discussed in the previous section, in real experiments, ballistic transport can only be achieved
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if the sample length L is much smaller than the mean free path lm and phase coherence length

lϕ.

As an ideal quantum wire has a finite resistance, there must be dissipation if current

flows through the wire. As the resistance is only at the contacts not inside the wire, this

means the dissipation occurs at the contacts. When the current is large enough, due to heat

dissipation, the contacts will be burned before the wire. This has been used as an additional

proof that transport is ballistic in MWNTs [47].

In non-ideal systems with multiple subbands, there is a certain probability R that an

electron entering the conductor will get reflected and a probability T that it will be trans-

mitted. These two probabilities obey a simple relation R + T = 1. Here we assume the

transmission probability T is the same for all subbands. The conductance of this system is

then [46]

GC =
I

V
=

2e2

h
MT, (2.30a)

and the resistance is

RC =
h

2e2

1

MT
(2.30b)

Equation 2.30a is called the two-terminal Landauer formula because it includes the contacts.

If the contacts are not included, Eqns. 2.30 become [46]

GS =
2e2

h

MT

R
(2.31a)

RS =
h

2e2

R

MT
, (2.31b)
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where GS (RS) is the conductance (resistance) from the scatterers inside the wire.

If the transmission probability is not the same for all subbands, we can define Tij = |tij|2

as the probability for an electron from the jth subband to be transmitted to the ith subband

in the other lead and Rij = |rij|2 as the probability of an electron being reflected from the

jth subband to the ith subband. Here the transmission and reflection amplitudes tij and rij

are elements in the scattering matrix




oL1

oL2

. . .

oLM

oR1

. . .

oRM




=




r11 r12 . . . r1M t11 t21 . . . tM1

r21 r22 . . . r2M t12 t22 . . . tM2

. . .

rM1 rM2 . . . rMM t1M t2M . . . tMM

t11 t12 . . . t1M r11 r21 . . . rM1

. . .

tM1 tM2 . . . tMM r1M r2M . . . rMM







iL1

iL2

. . .

iLM

iR1

. . .

iLM




. (2.32)

where o(i)Ln means the outgoing (incoming) electron wave amplitude of mode n in the left

lead, and similarly o(i)Rn for the right lead. We can define a 2M by 2M matrix as

S =




r tT

t rT


 . (2.33)

The scattering matrix is a unitary matrix defined as

O = SI, (2.34)
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where O (I) is the column vectors representing the outgoing (incoming) wave amplitudes in

the different subbands in the leads as

O(I) =




o(i)L1

o(i)L2

. . .

o(i)LM

o(i)R1

o(i)R2

. . .

o(i)LM




. (2.35)

We note that unitary matrix S satisfies the relation S+S = I = SS+. The corresponding

equations of Eqn. 2.30a, 2.31a are [48]

GC =
2e2

h

∑
i

Ti =
2e2

h
tr tt† (2.36)

GS =
2e2

h

2
∑

i Ti

∑
i 1/vi∑

(1 + Ri − Ti)/vi

, (2.37)

where Ti =
∑

j Tij, Ri =
∑

j Rij, vi is the electron velocity in the ith subband.
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For a four-terminal device shown schematically in Fig. 2.12, in the weak coupling limit

that the voltage probes lead 3 and 4 are only weakly connected to the sample, the four-

terminal resistance is given by [49]

R12,34 =
h

2e2

1

T
(0)
12

T31T42 − T32T41

(T31 + T32)(T41 + T42)
, (2.38)

where T
(0)
12 is the transmission without the presence of other leads. If leads 3 and 4 are

strongly coupled, Eqn. 2.38 takes a more complex form

R12,34 =
h

2e2
(T31T42 − T32T41)/D, (2.39)

where D is a sample-specific constant independent of the index 1, 2, 3, 4 [50]. In a magnetic

field B, the two-terminal resistance is symmetric with respect to B, RC(B) = RC(−B). For

the four-terminal resistance, the relation is generally not true

Rmn,kl(B) 6= Rmn,kl(−B). (2.40)

The correct relation given by the Landauer-Büttiker equation is [50]

Rmn,kl(B) = Rkl,mn(−B). (2.41)

This means that when we reverse the magnetic field and exchange the current and volt-

age leads, the resistance (conductance) will be the same. The reciprocal relation has been

experimentally observed first by Benoit et al. [51].
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2.2.4. Electron-electron interaction

The Landauer formular discussed in the previous section gives the quantized conduc-

tance in the ballistic transport case. This formula was derived without the consideration of

electron-electron interaction. In the three dimensional case, the electron-electron interaction

can be treated as a perturbation within the frame work of Fermi liquid theory [24]. Fermi

liquid theory states that there is a one to one correspondence between the low energy exci-

tations of a free Fermi gas and those of an interacting electron liquid. These excitations are

called “quasiparticles”. As a result of the Pauli exclusion principle and the conservation law

of momentum and energy, the availabe phase space for electron-electron scattering at low en-

ergies (e.g. kBT ¿ EF ) is small compared with the large phase space available in 3D [24,52].

The electron-electron scattering rate is small compared with the dominant scattering mech-

anism (e.g. the electron elastic scattering rate). The correlations in the electron system

are weak, although the interactions may be strong. For one-dimensional systems, because

the momentum and energy conservation law are actually the same (E − EF ≈ v(p − pF )),

they are not as restrictive as in the 3D case. Perturbation corrections describing even weak

electron-electron interaction are divergent. The electron-electron interactions will remove the

sharp Fermi surface. The ground state is non-perturbative and it is described as a Luttinger

liquid [52–54]. In a 1D system, even weak interactions can result in strong correlations.

According to Luttinger liquid theory, the charge and spin excitations are collective modes

(plasmons) described by boson modes. The charge and spin modes have different excitation

energies and propagate at different velocities in the presence of interactions. This leads to
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spin-charge separation, a peculiar effect predicted by Luttinger liquid theory. In transport,

Luttinger liquid theory predicts the conductance to be

G = g
e2

h
, (2.42)

where the correlation exponent g is a dimensionless parameter (the dimensionless con-

ductance). g = 1 for the non-interacting case, g < 1 for repulsive interactions, and

g > 1 for attractive interactions. However, for a 1D wire of finite length L connected

to Fermi liquid contacts, Luttinger liquid behavior will be cut off at temperatures T for

which (~vF /kBT ≥ L) [55]. If the coupling is weak and transport is limited by tunneling,

the tunneling DOS demonstrates a power law dependence with energy,

ν(E) ∝ Eα, (2.43)

where the exponent α depends on the contact geometry. For an armchair SWCNT with

tunneling contacts made to its ends [56],

α = (
1

g
− 1)/4, (2.44a)

while for an armchair SWCNT with tunneling contacts made to its body,

α = (
1

g
+ g − 2)/8. (2.44b)
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The temperature T and voltage dependence V of the conductance is given by [56]

G(V, T ) = ATα cosh(
eV

(2kBT )
)|Γ(

1 + α

2
+

ieV

2πkBT
)|2, (2.45a)

∝





T α eV ¿ kBT

V α eV À kBT

(2.45b)

where Γ is the gamma function and A is a prefactor.

Armchair SWCNTs are believed to be Luttinger liquids [25]. There is some experimental

evidence that supports this claim [57,58], but further experiments are needed to unambigu-

ously prove that SWCNTs are Luttinger liquids. The experimental details will be discussed

in the next section.

2.2.5. Interference in diffusive transport

In the ballistic transport regime, the length scale of the sample L satisfies L ¿ lm, lϕ,

where lm and lϕ are the mean free path and phase coherence length, respectively. In the

diffusive regime, the sample length satisfies lm ¿ L ¿ lϕ. This means that as an electron

moves through the conductor, it will experience some elastic scattering as L À lm but still

maintain phase coherence as L ¿ lϕ. This leads to many interesting phenomena such as

WL, UCF, and the Aharonov-Bohm effect. We will follow Ref. [59] to give a brief review of

these phenomena.

As shown in Fig. 2.13(a), in electron transport, there are many paths for electrons to

go between two points within a conductor. There are also paths like that are shown in Fig.
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1 2

3 4
Figure 2.12. (Color) Schematic of a four terminal measurement. The current
is driven from lead 1 to lead 2. The voltage probes are lead 3 and lead 4.

r r΄

(a)

r

(b)

Figure 2.13. (Color) Mechanism of coherent backscattering. (a): the path for
electron travels from r to r′. (b) the path for electron travels back to r. For
each such path, there is a reverse path as shown in the dashed line.
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2.13(b) for the electron to return back to r. At zero magnetic field, for each such path there

is another path for the electron to travel backwards like shown in dashed line in the Fig.

2.13(b). In the Feynman path integral formalism, the probability of propagating from r to

r′ during a time t is

P (r, r′, t) = |
∑

i

Ai|2 =
∑

i

|Ai|2 +
∑

i6=j

AiA
∗
j , (2.46)

where the Ai are probability for each single trajectory i connecting r and r′. The classical

diffusion probability corresponds to the first term, while the second term describes quantum

interference. If r and r′ are different, the phase difference is uncorrelated over all trajectories.

However, if r and r′ are same, P (r, r, t) will describe all closed loop trajectories. In the

absence of magnetic field, time-reversal invariance implies that A+, A− (for clockwise and

counterclockwise propagation respectively) are the same, i.e. A+ = A− = A.

P (r, r, t) = |A+ + A−|2 = |A + A|2 = 4|A|2. (2.47)

The enhanced coherent backscattering is called WL and it can be suppressed by a small

magnetic field, as a magnetic field will break the reversal symmetry of such paths so that

A+ 6= A−. When a magnetic field is applied, the phase difference acquired between the

clockwise and counter-clockwise paths is

ϕ = h−1

∮

+

p+ · dl − h−1

∮

−
p− · dl

=
2e

h

∫
(∆× A) · dS =

2eBS

h
≡ 2S

L2
m

≡ 4π
Φ

Φ0

. (2.48)
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The phase difference is twice the enclosed area S divided by the square of the magnetic

length Lm ≡ (~/eB)1/2, or alternatively, it is 4π times the enclosed flux Φ in units of the

elementary flux quantum Φ0 ≡ h/e.

This suppression can be used to directly measure the phase coherence length of the

electrons. In a magnetic field, the paths with an area larger than L2
m lose phase coherence

and do not contribute to the interference. In 1D, the WL correction is given by (Lϕ, Lm À

W À Lel) [60]

∆G1D
WL = − e2

π~
1

L

[
3

2
(

1

Dτϕ

+
4

3DτSO

+
1

DτB

)−1/2 − 1

2
(

1

Dτϕ

+
1

DτB

)−1/2

]
, (2.49)

where τB = (3L4
m)/(W 2D), τSO is the spin-orbit scattering time and D is the diffusion

constant. The characteristic magnetic field Bc for the suppression of 1D WL is [59]

Bc =





~
e

√
3

Wlϕ
lm ¿ W

~
e

1
W

√
C1

WvF τϕ
L2

m À Wlm, lm À W

~
e

C2lm
W 2vF τϕ

Wlm À L2
m À W 2, lm À W

(2.50)

where C1, C2 are constants depending on boundary scattering conditions. For specular

scattering, it is found that C1 = 9.5 and C2 = 4.8, while for diffusive scattering, C1 = 4π

and C2 = 3.

UCF is another feature in diffusive transport [61]. The electrons can pass through

the disordered conductor through many paths. Those paths interfere with each other and

the conductance is determined by their phase difference. When the configuration of the
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impurities changes, the phase difference between different paths will change and can cause

fluctuations on the order of e2/h. To understand this behavior, we start from the Landauer

formula

G =
e2

h

M∑
i,j=1

|tij|2, (2.51)

where M is the total number of subbands. The variance of the conductance is

< (δG)2 >=< G2 > − < G >2 (2.52)

With

∑
|tij|2 = M −

∑
|rij|2, (2.53)

we obtain

< δG2 >= (
e2

h
)2(δ(

∑
|rij|2)) = (

e2

h
)2M2(δ|rij|2)2, (2.54)

where

(δ|rij|2)2 ≡< |rij|4 > − < |rij|2 >2 . (2.55)

As there is no correlation between different reflective paths,

< |rij|4 >= 2 < |rij|2 >2 . (2.56)
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In the diffusive limit < |rij|2 >= 1/M . We can get

(δG)2 ≈ 2(
e2

h
)2, (2.57)

δG ≈
√

2
e2

h
. (2.58)

The detailed calculation yields [59]

δG =
gsgv

2
β−1/2C

e2

h
. (2.59)

Here C is a constant that depends on the shape of the sample. C ≈ 0.73 in a narrow channel

with L ¿ W . β = 1 in a zero magnetic field and β = 2 when time-reversal symmetry

is broken with magnetic field. gsgv account for spin and valley degeneracies. Recall that

the phase coherence length lϕ ≡ (Dτϕ)−1/2 and the thermal length lT ≡ (~D/kBT )1/2. At

non-zero temperature, for lϕ ¿ lT , L [59],

δG =
gsgv

2

√
β
√

12(
e2

h

lϕ
L

)3/2, (2.60a)

and for lT ¿ lϕ ¿ L,

δG =
gsgv

2

√
β(

8π

3
)1/2 e2

h

lT l
1/2
ϕ

L3/2
. (2.60b)

For the intermediate temperature regime when lϕ ≈ lT ,

δG =
gsgv

2
β−1/2

√
12

e2

h
(
lϕ
L

)3/2[1 +
9

2π
(
lϕ
lT

)2]−1/2. (2.60c)



44

The above calculated value is in regard to change of impurity configuration in the sample.

Experimentally, it is not practical to deliberately change the impurity configuration of the

sample, rather it can be done by changing the magnetic field or Fermi energy by means of a

gate. UCF manifests itself as a random fluctuation on the order of e2/h on sweeping mag-

netic field or gate voltage. This random fluctuation depends on the impurity configuration,

thus the pattern is sample-specific but reproducible in the same sample. The sample repro-

ducibility holds as long as the configuration of impurities in the sample does not change,

such as can be caused by thermal annealing.

As a magnetic field can change the relative phase of different paths, the conductance

fluctuation can be characterized by a correlation field defined by

C(∆B) =< g(B)g(B + ∆B) > − < g(B) >2 . (2.61)

The correlation function has a normal decay with the correlation field ∆Bc defined by the

equation C(∆Bc) = 0.5× C(0). In the dirty limit,

∆Bc = 2πC
~
e

1

Wlϕ
, (2.62)

where the prefactor C decreases from 0.95 for lϕ À lT to 0.42 for lϕ ¿ lT .

The phase coherence length lϕ decreases with increasing temperature. There are three

mechanisms that may contribute to electron dephasing: electron-phonon scattering, electron-

electron scattering and scattering from impurities which have an internal degree of freedom

(e.g. magnetic impurities). It is known that in the absence of an extrinsic noise source or
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magnetic impurities, the dominant source of dephasing in metallic thin films is electron-

phonon interactions above about 1 K, while at low temperatures, electron-electron interac-

tions are the leading source of dephasing. If only electron-electron interactions are taken

into account, the phase coherence length in 1D is given by [62],

lϕ = (
DGDL~2

2e2kBT
)

1
3 , (2.63a)

∼ T− 1
3 , (2.63b)

where GD is the classical Drude conductance of the sample.

2.2.6. Quantum dot physics

A typical quantum dot is a metallic island with two metallic electrodes close by. This

island is isolated from its surroundings except for tunneling between the electrodes and the

island. A third electrode is sometimes used as a gate but it is only capacitively connected to

the central island5. The two electrodes are also referred to as source and drain as electrons

can tunnel from the source to the island and then from the island to the drain. The typical

size of quantum dots is about a few tens to a few hundred nanometers. When electrons

tunnel from the source to the quantum dot, the extra charge creates a change of e2/2CΣ in

electrostatic potential of the dot. CΣ is the total capacitance of the quantum dot coupled

to the environment. In a large system where CΣ is large, the change is hardly noticeable.

However, in a small quantum dot, the potential change would be greater than the thermal

5Capacitively connected means it can change the chemical potential in the island, but no electron tunneling
is allowed.
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energy at low temperatures. The other constraint is that the quantum fluctuation of the

charge number n in the dot must be sufficiently small. For this latter constraint to hold, the

tunneling resistance Rt must be sufficiently large. These two conditions can be written as,

e2

2CΣ

À kBT, (2.64a)

Rt À h

e2
. (2.64b)

If these conditions are satisfied, Coulomb repulsion will prevent another electron tunneling

into the quantum dot before the first electron tunnels out of the quantum dot. This causes

a blockade of electron transport [63].

When one applies a source-drain bias voltage V and a gate voltage Vg as shown in Fig.

2.14, the total electrostatic energy is

Es =
Q2

1

2C1

+
Q2

2

2C2

+
Q2

g

2Cg

=
1

2CΣ

(CgC1(
V

2
− Vg)

2 + C1C2V
2 + CgC2(

V

2
+ Vg)

2 + Q2), (2.65)

where Qg(1,2) is the charge in the gate (lead 1,2). Q = Q1−Q2−Qg is the net charge on the

island. The work done by the batteries is

W = Q1(
C2

CΣ

V +
Cg

CΣ

(
V

2
− V g)) + Q2(

C1

CΣ

V − Cg

CΣ

(
V

2
− Vg)). (2.66)
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The total energy in the system is

E = Es −W. (2.67)

The change of the total energy of the system for an electron tunneling through junction 1

is [63]

∆E±
1 =

e

CΣ

[−e

2
∓ (en−Qp + C2V + Cg(

V

2
− Vg))], (2.68)

where n is the net number of electrons on the dot, Qp is the random charge trapped in the

system near the junction. Qp is responsible for the asymmetries in the experimental I-V

characteristics. CΣ = C1 + C2 + Cg is the total capacitance of the quantum dot. Similarly,

the change of energy of the system for an electron to tunnel through junction 2 is

∆E±
2 =

e

CΣ

[−e

2
± (en−Qp − C1V − Cg(

V

2
+ Vg))]. (2.69)

For the jth junction, the total rate from occupied states on the left (right) to unoccupied

states on the right (left) is given by [63]

Γ±j (V ) =
1

eRtj

∆E±
j /e

1− e−∆E±j /kBT
, (j = 1, 2) (2.70)

where Rtj is the resistance of the jth tunnel junction.
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Let P (n) be the probability of finding n electrons on the island. The evolution of P (n)

for this double junction is given by the master equation [63]

∂P (n)

∂t
= Γ+

1 (n− 1)P (n− 1) + Γ−1 (n + 1)P (n + 1)− [Γ+
1 (n) + Γ−1 (n)]P (n)

+Γ−2 (n− 1)P (n− 1) + Γ+
2 (n + 1)P (n + 1)− [Γ−2 (n) + Γ+

2 (n)]P (n) (2.71)

For a stationary state

∂P (n)

∂t
= 0 (2.72)

The solution of Eqn. 2.72 is

[Γ−1 (n + 1) + Γ+
2 (n + 1)]P (n + 1) = [Γ+

1 (n) + Γ−2 (n)]P (n). (2.73)

As we know that the total probability must be one.

∑
n

P (n) = 1 (2.74)

P (n) can be calculated by solving Eqns. 2.72 and 2.74. The current is given by

I = e
∑

n

P (n)[Γ−1,2(n)− Γ+
1,2(n)]. (2.75)

The I-V characteristic can be calculated from Eqns. 2.72, 2.74 and 2.75. Figure 2.15(a) is

a simulation of the single electron tunneling effect at zero temperature. The characteristic

rhombic shape is know as “Coulomb blockade diamonds”. As the temperature increases,

the conductance at zero voltage becomes a small but nonzero value. The pattern of the
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Figure 2.14. Equivalent electric circuit diagram for a quantum dot.
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Figure 2.15. The simulated conductance of a quantum dot as a function of Vg

and V at (a) T = 0, (b) kBT/eV = 0.1 (Darker means lower conductance).
For each junction, the tunneling resistance Rt1 = Rt2 and the capacity C1 =
C2 = Cg = CΣ/3 = C. The voltages are in units of e/C.
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“diamonds” also changes instead of being merely smeared by temperature as shown in Fig.

2.15(b).

If the conductance is high enough that the number of electrons is not well defined, or the

total capacitance is so large that the charging energy is too small compared to other energy

scales (e.g. kBT ), the Coulomb blockade effect will be absent and the transport reduces to

double barrier tunneling neglecting electron-electron interaction. Generally speaking, for a

resonant system such as a double tunneling barrier system, the transmission is

T (E) =
Γ1Γ2

(E − E0)2 + 1
4
(Γ1 + Γ2)2

. (2.76)

The Γ1(2)/~ are the escape rates for the 1 (2) leads. E0 is the resonant energy and T (E0)

is the transmission when on resonance. Equation 2.76 is valid for both coherent tunneling

and sequential tunneling and is often called the Breit-Wigner form [46]. Scattering processes

between the barrier have little effect on the resonant form. If the two barriers are symmetric,

Γ1 = Γ2 = Γ/2, Eqn. 2.76 is then,

T (E) = T (E0)
1

1 + (E−E0

Γ/2
)2

. (2.77)

We can see that the transmission will drop to the half of the transmission on resonance when

E − E0 = Γ/2. Therefore Γ is the full width of the resonance.

Coulomb blockade effects can also appear in an unconventional way. Egger et al. [64]

found that an interacting, disordered conductor that acts as high-impedance transmission

line, connected only by tunnel junctions so that the level broadening is negligible, has the
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tunneling DOS that obeys a power law behavior

ν(E) ∝ Eα. (2.78)

This is very similar to the tunneling DOS of Luttinger liquid in Eqn. 2.43. It can be

understood as arising from the charge that has been transferred to one-dimensional plasmon

modes in such a disordered wire. Therefore the tunneling conductance is

G(T ) ∝ T α, (2.79a)

G(V ) ∝ V α, (2.79b)

where T is the temperature, V is the bias voltage and α is given by Eqn 2.44. The similarity

between the Luttinger liquid and unconventional Coulomb blockade has generated a lot of

interest for finding unambiguous ways to determine genuine Luttinger liquid behavior.

2.2.7. Fano resonances

The theory of Fano resonances was first developed by Fano to explain the asymmetric

lineshape in the spectra of rare gases. Fano’s model takes into account the interference be-

tween an auto-ionized state with discrete energy levels and a continuum of states [65]. Since

then, Fano resonances have been found to be universal phenomena that arise wherever there

is the probability of interference between a resonant transmission path and a direct transmis-

sion path. Fano lineshapes have been observed in the spectroscopy of atoms and molecules,
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in electron, neutron and Raman scattering, and more recently in quantum dots [66]. Figure

2.16 shows a schematic of the physics of the Fano resonance.

To briefly summarize, consider a system with a discrete energy state embedded in a con-

tinuum of states. The Hamiltonian of the discrete state without considering the continuum

is

Hdiscrete = Eϕ|ϕ〉〈ϕ|, (2.80a)

where ϕ is the discrete state. The Hamiltonian of the continuum states is

Hcontinuum =
∑

E′
E ′|ψE′〉〈ψE′ |, (2.80b)

where ψE′ is the eigenstate in the continuum with energy E ′. Now, for the whole system,

the Hamiltonian is

H = Eϕ|ϕ〉〈ϕ|+
∑

E′
E ′|ψE′〉〈ψE′|+

∑

E′
(VE′ |ψE′〉〈ϕ|+ V ∗

E′|ϕ〉〈ψE′|), (2.81)

where VE′ is the coupling strength between the discrete state and the continuum. The

eigenstates ΨE of the whole system can be expressed as a linear combination of ϕ and

{ψE′},

ΨE = aϕ +

∫
dE ′bE′ψE′ , (2.82)
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Figure 2.16. Schematic view of a Fano resonance. There are two paths for the
transmission, one is resonant and one is direct. We note that these two paths
do not need to be spatially separated.
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where a and bE′ are coefficients which depend on E. The explicit form of a and bE′ will be

given later.

According to perturbation theory [67], the state ϕ becomes

Φ = ϕ + P

∫
dE ′ VE′ψE′

E − E ′ , (2.83)

where P denotes the principal part of the integral, and Φ is the state ϕ modified by an

admixture of states of the continuum. The energy E of the resonant state is shifted by an

amount F . E = Eϕ + F ≡ E0, where

F = P

∫
dE ′ |VE′ |2

E − E ′ . (2.84)

If |VE′| is a constant, F = 0. The phase shift ∆ is

∆ = − arctan
π|VE|2

E − Eϕ − F (E)
. (2.85)

Fano calculated the result and he obtained [65]

a =
sin ∆

πVE

, (2.86a)

b =
VE′

πVE

sin ∆

E − E ′ − cos ∆ δ(E − E ′). (2.86b)

We define

ε = − cot ∆ =
E − Eϕ − F (E)

π|VE|2 . (2.87)
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For an incoming initial state i, it enters the system and eventually turns into a linear

combination of the system eigenstates {ΨE} through a perturbation T . The transition rate

is then [67]

ωΨ←i =
2π

~
|〈ΨE|T |i〉|2. (2.88a)

Similarly the transition rate to the continuum without the discrete state is

ωψ←i =
2π

~
|〈ψE|T |i〉|2. (2.88b)

Fano calculated

〈ΨE|T |i〉 =
1

πV ∗
E

〈Φ|T |i〉 sin ∆− 〈ψE|T |i〉 cos ∆. (2.89)

As E passes through the resonance at E = E0, ∆ varies sharply, which causes a sharp

variation in 〈ΨE|T |i〉. As sin ∆ is an odd function of E −E0, and cos ∆ is an even function

of E −E0, the contribution from 〈Φ|T |i〉 and 〈ψE|T |i〉 to 〈ΨE|T |i〉 have opposite phases on

the two sides of the resonance.

The ratio of the transition rates is then [65]

TΨ←i

Tψ←i

=
ωΨ←i

ωψ←i

=
|〈ΨE|T |i〉|2
|〈ψE|T |i〉|2 =

(ε + q)2

1 + ε2
, (2.90)
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where ε = − cot ∆ = 2(E − E0)/Γ, E0 and Γ = 2π|VE|2 are the resonant energy and width,

respectively. The Fano parameter q is

q =
〈Φ|T |i〉

πV ∗
E〈ψE|T |i〉 , (2.91)

To understand the physical meaning of q, we can think of the initial state i transforming to

{ΨE} through two ways: one is through the continuum state {ψE} and the other through

the modified resonant state Φ. We note that

1

2
π|q|2 =

|〈Φ|T |i〉|2
|〈ψE|T |i〉|2Γ (2.92)

is the ratio of the transition probability to the modified discrete state Φ and to a band width

Γ of unperturbed continuum states {ψE}. q is a measure of the coupling strength between

the resonant state and the continuum state. If VE′ is real, there is no dissipation for the

transition from one subsystem to the other. However, if VE′ has an imaginary part, this

means there is some dissipation in this system which is consistent with Clerk et al.’s analysis

as we will show later.

Nöckel et al. [68] calculated the interference lineshape in a quantum wire. They consid-

ered an unbound state in one subband coexisting with a bound state in another subband.

(For example, one open channel and one closed channel are coupled.) The transmission then

exhibits the asymmetric Fano line shape. This is very interesting, especially for our CNT

systems.
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Clerk et al. [69] have developed another way to describe the Fano resonance that of-

fers another perspective. They considered the Fano resonance as an interference of direct

and resonant transmission by summing the transmission amplitude of direct and resonant

transmission. Let the resonant path have the usual Breit-Wigner transmission amplitude

tr(E − E0) = zrΓ/[2(E − E0) + iΓ] and the direct path have the transmission amplitude

td = eiφ
√

Gd, where φ is the phase difference between the direct and resonant path. The

total conductance is given by the sum of the two

G(E) = |td + tr(E − E0)|2 = Gd
|ε + q|2
ε2 + 1

, (2.93)

where

ε =
E − E0

Γ/2
, (2.94a)

q = i + zr
e−iφ

√
Gd

= |q|eiθ. (2.94b)

Here the Γ is the width of the resonant state and |q| is related to the relative coupling

strength and phase difference of the direct and resonant transmission. In this case, q is a

complex number. =q (the imaginary part of q) is related to dephasing and can be used to

calculate the phase coherence time when T ¿ Γ [69],

~
τϕ

= Γ[|q|2 + 1−
√

(|q|2 + 1)2 − 4(=q)2]. (2.95)
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This model is very clear about the origin of the direct transmission and the transmission

through a resonant state. This is especially useful for Fano resonances in Aharonov-Bohm

interferometers that we will discuss in the next section.

Figure 2.17 gives the simulation of the Fano profile for different q. We can see that |q| (the

modulus of q) determines the ratio of the resonant conductance to the direct conductance,

whereas the phase of q affects the asymmetry. When |q| = 0, the line shape is a symmetric

dip and in the opposite limit |q| = ∞, the line shape is a symmetric peak similar to the

Breit-Wigner resonance discussed in the last section. The line shape is also symmetric for

any value of q when the phase θ is ±π/2. If |q| is less (greater) than 1, the dominant feature

will be a dip (peak).

At finite temperature and finite bias, the current is

I =
2e

h

∫
dE T Fano(E)(f(E − eV

2
)− f(E +

eV

2
)), (2.96)

where f(E − µ) = 1
e(E−µ)/kBT +1

is the Fermi distribution function and T Fano(E) = Gd
|q+ε|2
1+ε2 is

the Fano transmission coefficient at zero temperature, with ε = E−E0

Γ/2
. In the linear response

regime6, the conductance for a Fano resonance is

G =
2e2

h

∫
dE T Fano(E)(−∂f

∂E ), (2.97)

Numerical simulations of the temperature dependence of the Fano profile are shown in Figure

2.18. As T increases, the shape of Fano resonance remains almost the same although the

6In the linear response regime, TFano(E) is independent of energy E at the range of (−eV/2, eV/2).
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Figure 2.17. (Color) Simulations of Fano profile at zero temperature with dif-
ferent phase of q. G0 is the conductance far away from resonance. (a) |q|=1,
(b) |q|=0.5, (c) |q|=2.
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Figure 2.18. (Color) Numerical simulations of temperature evolution of Fano
profile. G0 is the conductance at far away from resonance. (a) |q| = 1 and the
phase θ = 0, (b) |q| = 0.5, θ = π/2, (c) |q| = 2, θ = π/2.
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amplitude of the conductance peak or dip decreases and the half width increases. Γ ∼ 3.5 kBT

is expected from Fermi broadening. At T À Γ, we can expect the Fano shape to be totally

destroyed.

2.3. Transport Measurement of Carbon Nanotubes

There is a tremendous amount of interest in the transport properties of the CNTs for

the reasons outlined in Chapter 1. Although a large amount of theoretical and experimental

work has been done, some fundamental questions regarding CNT electronic transport remain

unanswered and require clarification. In this section we will give a brief review of the

experimental work.

2.3.1. Nanotube electronic structure

In Sec. 2.1, we demonstrated that the band structure of SWCNTs depends on their

chirality. Wildöer et al. [70] and Odom et al. [71] first verified the predicted relation between

the atomic structure of the SWCNTs and their electronic structure,. In both groups, they

used a scanning tunneling microscope (STM) operating at low temperature to probe the DOS

and the atomic structure of SWCNT. An image of atomically resolved SWCNT structure

can be found in Fig. 2.1(a). Metallic and semiconducting SWCNTs were observed and their

atomic structures are in good agreement with the theoretical predictions. However, small

band gap semiconducting CNTs (n − m = 3l, l 6= 0) were not observed by either group.

The small-band gap was later observed by Ouyang et al. [72] using similar techniques at

5 K. Small band gaps (0.080, 0.042, 0.029 eV) were observed in (9,0), (12,0) and (15,0)
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SWCNTs, respectively. In the armchair SWCNT (8,8), a gap-like feature was observed

in a bundle of SWCNTs but absent in an isolated SWCNT. This fits very well with the

theoretical predictions described in Sec. 2.1.5. Transport measurements are also consistent

with the theory. In this kind of measurement, the CNT is typically placed on a substrate,

connected to electrodes. A gate is often used in this type of device. Tans et al. identified

metallic [73] and semiconducting [74] SWCNTs, by measuring the CNT conductance as a

function of gate voltage and Zhou et al. [75] reported observation of small-band gap SWCNTs

using similar techniques. Experimentally, the conductance of a metallic SWCNT shows

almost no dependence on the gate voltage, while the a semiconducting SWCNT shows large

dependence. The small gap semiconducting SWCNT appears similar to a metallic SWCNT

at room temperature. But a dip in conductance with varying gate voltage will show up at

low temperatures.

For MWNTs, in the early experiments, the devices showed no dependence on gate volt-

age [15,62]. In 2001, Collins et al. [76] demonstrated each shell of a MWNT can be either

metallic or semiconducting. They developed a method to remove single carbon shells from

MWNTs. Figure 2.19 shows their technique of electrically breaking down individual shells

of a MWNT and individual SWCNTs in a SWCNT rope. Figure 2.20(A) demonstrates that

after each shell is burned, the behavior of the MWNT can be semiconducting or metallic

depending on the outermost shell. After all the metallic shells are burned, a band gap can

be observed as in Fig. 2.20(B). Their experiment demonstrates that a MWNT can have

both metallic and semiconducting shells in the same device and the transport in MWNTs is

mostly through the outermost shell.
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Figure 2.19. (Color) (A) The partial electrical breakdown of a MWNT. (B)
Images of partially broken MWNTs show clear thinning. (C) Similar thinning
in SWCNT ropes. Adapted from Ref. [76].

Figure 2.20. (A) The low-bias conductance G(Vg) changes between semicon-
ducting and metallic behaviors due to the nature of the outermost shell at each
stage of breakdown. (B) When the last metallic shell (n-9) has been removed,
a band gap can be seen. Adapted from Ref. [76].
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2.3.2. Ballistic transport

A metallic SWCNT has two bands crossing the Fermi energy, the ideal conductance for

ballistic transport is 4e2/h from the Landauer formula, taking into account the spin degen-

eracy. However, in early experiments, it was hard to make good contact to the CNTs. In

these devices, single electron tunneling effects were first observed [73,77]. These experiments

demonstrated that metallic SWCNTs behave like a large quantum dot, which indicated the

electron in the metallic SWCNT is delocalized. Further details about these experiments

will be discussed in Sec. 2.3.4. The first experimental evidence of ballistic transport in a

CNT was done in MWNTs. Frank et al. [47] attached a MWNT to the end of a conducting

atomic force microscope (AFM) tip. By dipping the other end of the MWNT in mercury,

they were able to measure the conductance of the MWNT as a function of the CNT length.

They found the conductance is independent of the length and quantized at 2e2/h. They

further carried out experiments by putting current in the MWNTs and found MWNTs can

sustain a huge current. By their estimation, if the resistance was from the inside of the

MWNTs, the MWNTs would have been burned out due to heating by the large current.

They concluded that MWNTs are ballistic conductors even at room temperature. However,

the value of 2e2/h is only half of what is predicted by theory. This experiment remains

controversial until today as other experiments done with MWNTs suggested diffusive trans-

port behavior [15,62,78,79]. Urbina et al. [80] carried out a similar experiment by dipping

the MWNTs into Aroclor 12547. They found the conductance was independent of length

and the quantization was 4e2/h as the theory predicted. As will be discussed in Sec. 2.3.3,

7A mixture of polychlorinated biphenyls.
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other experiments showed diffusive behavior in MWNTs [15,62,78,79,81]. The discrepancy

remains unsolved although it might be related to the fact in the experiments showing bal-

listic behavior, MWNTs were suspended while the experiments showing diffusive behavior,

MWNTs lay on substrates. One possible explanation is that the MWNTs on the substrates

are electrically doped by the substrate.

Ballistic transport in SWCNTs has also been reported in both metallic [82] and semi-

conducting SWCNTs [18]. The criterion of the ballistic transport used by the authors in

both papers was that the conductance can approach the theoretically predicted value of 4e2/h

when tuned by a gate. However, we should be cautious about this claim as the length depen-

dent resistance measurement, which would be overwhelming evidence of ballistic transport,

was not possible in this type of experimental setup. Better evidence of ballistic transport

in metallic SWCNTs was shown by Bachtold et al. [81]. In their experiment, CNT devices

were scanned by an electrostatic force microscopy and scanned gate microscopy. The au-

thors scanned the voltage profiles of the CNTs while biasing the CNTs. As there was no

measurable voltage drop in the metallic SWCNTs, metallic SWCNTs were determined to

be ballistic conductors. MWNTs and semiconducting SWCNTs were also studied and the

authors concluded that MWNTs are diffusive conductors while semiconducting SWCNTs

have a series of large barriers to conduction along their length. This result with SWCNTs

is consistent with their earlier work [83] that claims that the metallic SWCNTs are ballistic

conductors as the backscattering of electrons by long range disorder is suppressed. In doped

semiconducting SWCNTs, backscattering is allowed. For MWNTs, as discussed earlier, there

is still controversy about whether the transport is ballistic or diffusive. The result of this
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experiment adds weight to the view that MWNTs are diffusive conductors, but the debate

far from over. A very recent experiment even claims observation of multichannel ballistic

transport in MWNTs [84].

2.3.3. Diffusive transport

Diffusive transport behavior in MWNTs was discovered in the first attempt of measuring

MWNT devices by Langer et al. [78]. A MWNT 800 nm long with a diameter of 20 nm

was measured down to 20 mK. A logarithmic temperature dependence of conductance was

observed at high temperature. At low temperature the conductance saturated. This was

explained as arising from two-dimensional WL. At low temperatures, a magnetic field was

applied perpendicular to the MWNT tube axis. The conductance increased with aperiodic

fluctuations as shown in Fig. 2.21(a). The temperature dependence of the amplitude of the

fluctuation is shown in Fig. 2.21. The data from Langer et al.’s experiment support the

presence of WL and UCF in MWNTs. The idea of MWNTs being diffusive conductors was

further strengthened by a series of experiments [15,62,79,81]. In Ref. [79], a magnetic field

was applied along the tube axis. If MWNTs were ballistic, the nanotube resistance would

oscillate with the enclosed magnetic flux with a period of h/e due to the Aharonov-Bohm

effect [85]. On the other hand, if transport is diffusive, the oscillation period would be

h/2e [86]. As the conductance oscillates with a period of h/2e, the authors concluded that

transport in MWNTs was diffusive with an estimated phase coherence length lϕ ≈ 54 nm

at 1.8 Kelvin. Another implication of this experiment is that the conduction of MWNTs
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Figure 2.21. (a) Magnetic field dependence of the magnetoconductance at dif-
ferent temperatures. (b) Temperature dependence of the amplitude of δG for
three select peaks in (a) as well as rms[δG]. Adapted from Ref. [78]
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is through the outermost shell. This assumption was supported by Ref. [76] as discussed

before.

The phase coherence length lϕ was measured by Stojetz et al. [87] using a sweeping

gate voltage to get an ensemble averaged magnetoresistance. This ensemble average would

decrease the contribution from UCF, but would not affect WL. Their results are shown in

Fig. 2.22.

More recently, Stojetz et al. [88] measured the the conductance of a MWNT as a function

of gate voltage and perpendicular magnetic field. They found the phase coherence length lϕ

was dependent on the gate voltage U . The averaged phase coherence length was about 120

nm at 1K with a power law dependence with temperature. The exponent -0.31 was close to

the theoretical predictions as in Eqn. 2.63a.

In closing, only a few experiments have studied the phase coherence length. MWNT

have been cooled below 300 mK only in Ref. [78]. This study yielded a very short phase

coherence length, which is inconsistent with other studies [62,79,88].

2.3.4. Nanotube quantum dot

Bockrath et al. [77] measured SWCNT bundles and Tans et al. [73] measured individual

SWCNTs. In their experiments, the SWCNTs or SWCNT bundles were poorly connected

to the electrodes resulting in high contact resistance between the SWCNTs and the elec-

trodes. In this case, the transport was dominated by Coulomb blockade. The CNT de-

vice conductance measured in both experiments was on the order of 0.01∼0.1 e2/h, where

e2/h=25.898 kΩ is the conductance quantum. Coulomb blockade effects were found in these
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Figure 2.22. Temperature dependence of phase coherence length of a MWNT
derived from WL (hollow triangle) and UCF (solid circle). The solid line is a
fit to T−1/3. Adapted from Ref. [87].

Figure 2.23. (Color) (a) Conductance G as a function of gate voltage U and
perpendicular magnetic field B at a temperature 10 K. (b) The deviation of
G from the zero-field conductance G(U,B)−G(U, 0). (c) Reproduction of the
magnetoconductance by 1D WL. (d) Phase coherence length lϕ vs gate voltage
as obtained from the fit. (e) Elastic mean free path and number of transport
channel per spin direction. (f) Differential conductance as a function of U and
dc bias voltage V at T=10 K. (g) Exponent α vs U from power law V α to
G(U, V ) in the range eV À kBT . Adapted from Ref. [88].
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systems, manifesting themselves as periodic oscillations with applied gate voltage. For doped

semiconduting SWCNTs with high contact resistances, Coulomb blockade manifested itself

as an irregular oscillation because the impurities or defects effectively cut the SWCNT into

multiple sections. Each section with different length, had a different period with respect to

gate voltage [83].

For SWCNTs with intermediate contact resistances with a conductance on the order of

e2/h, Kondo physics was discovered [89]. In this regime, charging effects still play a central

role. But high order processes known as co-tunneling can be present. As there is more

than one electron in the CNT quantum dot and the electron has spin, spin shell filling was

observed as a result of the Pauli exclusion principle [90]. Fabry-Perot interference was found

in SWCNTs with a conductance approaching 3∼4 e2/h [91]. In this limit, the transparency is

high and the electron can be reflected from the two CNT-electrode contacts. The interference

effect can be tuned by a gate. The Fabry-Perot effect in SWCNTs was regarded as a proof

of ballistic transport in SWCNTs. This is because to observe Fabry-Perot interference, the

electron must coherently travel many times through the device, being reflected only at the

contacts, so the mean free length must be very long.

In all these measurements, the SWCNTs were clean. In MWNTs, clean quantum dot

behavior was not observed until 2002. Buitelaar et al. [92] observed Coulomb blockade

behavior in some of the MWNT devices. Two devices were presented in the paper. The

first device constituted an open system which showed conductance variations as a function

of gate and bias voltage. The variations were explained as a quantum interference effect

and differed from Coulomb blockade patterns since they lacked periodicity. In the second
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device, Coulomb blockade patterns were observed as well as the Kondo effect. The difference

between the two devices was explained in the following way: the first MWNT device is a

diffusive conductor and the conduction is through the outermost shell. In the second device,

however, the conduction is through more than one shell. The outer shell is semiconducting

and the inner shell is metallic. While the outer shell has a lot of disorder, the inner shell is

clean and constitutes a large quantum dot. This argument is very interesting; however, no

further evidence supports their model.

2.3.5. Zero bias anomaly

Ohm’s law states the resistance (or conductance) of a conductor is independent of the bias

applied. The term “zero bias anomaly” is used for conductors with resistance (or conduc-

tance) that deviates from Ohm’s law at zero bias. In both SWCNTs [57] and MWNTs [93],

a suppression of conductance near zero applied bias has been observed. This zero bias anom-

aly observed in both experiments shows a power law dependence on temperature T and bias

voltage V . The power law behavior of SWCNT experiments was explained as arising from

Luttinger liquid behavior. This explanation has yet to be verified or challenged. In MWNTs,

as the diameters are large and diffusive behavior was observed in similar devices, unconven-

tional Coulomb blockade theory [64] is favored [94]. Both theories yield a similar power

law dependence as described in Sec. 2.2.6. Further work is needed to clarify this intriguing

behavior.
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2.3.6. Fano resonances in quantum dots

Fano resonances have been observed in quantum dots formed from two dimensional elec-

tron gases [66,95–98]. In Refs. [66,95], the quantum dot is defined by top gates and there

is no spatial difference between the direct and resonant transmission. Although these ex-

periments were the first observation of Fano resonances in a mesoscopic system, the nature

of the direct and resonant transmission paths was not clear. Kobayashi et al. [96–98] used

an Aharonov-Bohm interferometer with a quantum dot embedded in one arm. With this

configuration, the direct path and the path through a resonant state is clear. This config-

uration has the additional advantage that the phase difference between the two paths can

be easily tuned by applying a magnetic field. As discussed in Sec. 2.2.7, Clerk et al. [69]

derived the expression for the phase coherence time by looking at the real and imaginary

part of q. However, the decoherence caused by finite temperature was not considered. As

in the Aharonov-Bohm system, the phase of q can be tuned. The dephasing effect due to

temperature can be separated from intrinsic dephasing.

2.3.7. Summary

As discussed, the transport physics of CNTs, although intensively studied, has still left

many unsolved questions. The physics is rich and rewarding. The temperature regime stud-

ied ranged from room temperature to a hundred milliKelvin, with most experiments being

done above a few Kelvin and very few experiments being done in the millikelvin temperature



73

regime. The measurement of phase coherence length below 300 mK is insufficient. There is

still plenty of work left to be done which motivates this research.
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CHAPTER III

Experimental Techniques

The techniques of sample fabrication and measurement will be discussed in detail in this

chapter. The techniques described here are most frequently used. As the techniques are con-

stantly improving and equipment conditions keep changing, different techniques, approaches

and/or recipes were used in the experiments even for the same tasks at different time period

of the experiments.

3.1. Sample Fabrication Techniques

Our sample fabrication process for mesoscopic devices consists of wafer preparation,

lithographic patterning process, pattern transfer process such as thin film deposition or

etching depending on the application. Figure 3.1 shows the general process flow for our

fabrication. We start with wafer preparation, the next step is resist coating (photoresist or

e-beam resist), followed by lithographic patterning. The patterning can be done either by

photolithography or e-beam lithography. Depending on application, the next step can be

thin film deposition or etching. (Etching is not used in this work, but we still show it in the

flow chart for completeness of sample fabrication processes.) After thin film deposition and

the lift-off process, (or etching process as shown in the process flow chart,) the whole process

is repeated if multi-layer processing is required.



75Sample PreparationResist CoatingLithographic ExposureResist DevelopmentThin Film Depostion Wet and/or Dry EtchingLift-off Process Deposition or Etching?Deposition Etching
Final Layer?End of FabricationYes

No

Figure 3.1. Process flow of sample fabrication.
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3.1.1. Wafer selection and preparation

We started with commercial silicon wafers. Different wafers were used in different time

periods. In the early experiments, the wafers were polished on one side with 300 nm thermal

oxide layer for insulation1. These silicon wafers were not doped. At low temperature, the

substrates are essentially insulating. For backside gated experiments, highly doped (p++)

silicon wafers polished on one side with 350 nm thermal oxide layer were purchased2. In

those wafers, the silicon remained conductive even at low temperatures and was used as a

backside gate. As the wafers were 3 ∼ 4′′ in diameter while the size of the samples we could

process at one time was no more than 1′′ × 1′′3, the whole wafers were diced by a diamond

scriber before use. After the wafers were diced to the desired size, they were cleaned with

the following procedure:

(1) Ultrasonication for 3 minutes in an acetone bath.

(2) Ultrasonication for 3 minutes in an isopropyl alcohol bath.

(3) Ultrasonication for 3 minutes in an 18 MΩ Deionized (DI) water bath.

(4) Ultrasonication for 3 minutes in an isopropyl alcohol bath.

(5) Blow dry with dry N2 immediately after the wafers were taken out from the last

isopropyl alcohol bath.

The cleaning process should clean off any dust generated by dicing, and remove any organic

and inorganic contamination. At the end of the process, the isopropanol should come off the

1Purchased from Polishing Corporation of America, Santa Clara, CA.
2Purchased from Si-Tech Inc., Topsfield, MA.
3This limit is given by the size of our photomask.
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wafer surface uniformly. If it forms droplets on some spots, this means that the wafer is not

clean enough and the process should be repeated.

3.1.2. Photolithography

Photolithography was used for large area patterning and e-beam lithography was used

to pattern the small structures. This is because our device feature size is below 100 nm.

The photolithography system we used has a resolution limit of 1 ∼ 2 µm depending on the

exact system used. Electron beam lithography is needed for the small feature size needed

for our devices. Besides the resolution requirement, the design of the pattern changes from

sample to sample. E-beam lithography gives us the flexibility to pattern different samples

by simply generating a new computer pattern. However, although e-beam lithography has

the advantage of high resolution and flexibility, the writing speed is slow. For large area

patterning, it is often too time consuming.

For our samples, although the active area of the devices we fabricated is only a few

tens of square micrometers, in order to connect them to the electronic measuring apparatus,

large wirebonding pads of size at least 100 × 100 µm2 are needed. The strategy we use is

to pattern the large contact pads by photolithography, then pattern the fine structure by

e-beam lithography.

At different time periods, different recipes were used for photolithography. At the begin-

ning, we used a single layer photoresist (Shipley 18134) and a Quintel Q-2000 mask aligner5

to expose the substrate. As this method only used a single layer of resist, after lift-off, the

4Purchased from MicroChem Inc., Newton, MA.
5From Quintel Corp. Morgan Hill, MA.
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edge of the deposited metal became warped, creating a sidewall as shown in Fig. 3.2. The

consequence of this detrimental effect was that the subsequent layer of metal might lose

electrical contact with the first layer although visual inspection with a scanning electron

microscope (SEM) would look fine. To avoid this problem, bilayer resist was used. The idea

is to create an undercut, so the lift-off will be clean without warp at the edges. See Fig. 3.3

for an illustration of the process. Two techniques were developed and both give good results

with clean lift-off.

The steps in the first technique are listed below:

(1) Spin lift-off resist LOR 7B4 at 3000 rpm for 60 seconds for a 750 nm thick coating.

(2) Bake the substrate in a convection oven at 170 ◦C for 30 minutes.

(3) Spin Shipley 1813 photoresist at 4000 rpm for 60 seconds for a 1.5 µm thick coating.

(4) Bake the substrate in a convection oven at 110 ◦C for 30 minutes.

(5) Put the substrate in a homemade contact exposure apparatus6 and expose the sub-

strate under a 100 W spotlight halogen lamp for 7 minutes 30 seconds, using a Cr

on quartz photomask7.

(6) Mount the substrate on spinner and spin at 500 rpm. Develop the pattern by

spraying MF-319 developer4 on the substrate for 1 minute, followed by spraying DI

water for 1 minute. The substrate is then spun dry at 5000 rpm for 1 minute.

6The schematic of the home-made exposure device can be found in Ref. [99].
7Ordered from Photronics Corp., Milpitas, CA.
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A large undercut (1 µm) was present for this process. This undercut can be seen in an

optical microscope.

In the early experiments, an alternative technique was also used as described below:

(1) Spin Methylmethacrylate/methacrylic acid (MMA/MAA)(8.5)4 at 3000 rpm for 60

seconds for a 160 nm thick coating.

(2) Bake the substrate in a convection oven at 110 ◦C for 30 minutes.

(3) Spin Polymethylmethacrylate (PMMA) 950K (4% in anisole)4 at 4000 rpm for 60

seconds for a 200 nm thick coating.

(4) Bake the substrate in a convection oven at 110 ◦C for 30 minutes.

(5) Expose the substrate in a Quintel 4000 mask aligner in deep ultraviolet (DUV)

mode for 999 seconds (maximum allowed by the mask aligner). The wavelength of

the ultravilet light is 220 nm.

(6) Develop the pattern by spinning the substrate at 500 rpm while spraying MIBK:IPA

2:3 on the substrate for 3 minutes, followed by spraying isopropyl alcohol for 3

minutes. The substrate is then spun dry at 5000 rpm for 1 minute.

The undercut is not visible although believed to be present because MMA/MAA resist is

more sensitive to exposure than PMMA resist. Figure 3.4 shows the spin curve for the

MMA/MAA copolymer and PMMA.
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Figure 3.2. (Color) SEM image of a device with bad lift-off. The first layer was
patterned by photolithography and the second layer was patterned by e-beam
lithography. The red solid line circles the sidewall due to bad lift-off of the
first layer.

Figure 3.3. (Color) Steps in the photolithographic process. (a) Spin coat two
layers of resist and expose, (b) Development opens windows on the substrate,
the bottom layer is more sensitive to exposure resulting in an undercut, (c)
Evaporate metals, (d) Lift off the resist, leaving only metal on the substrate.
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Figure 3.4. (Color) The spin curves of MMA/MAA (8.5), PMMA 950 K 4%
in anisole and 2% in anisole.
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3.1.3. Electron beam lithography

The e-beam lithography is done in an e-beam writer converted from a JEOL JSM-840

SEM. The software ElectronScribe for e-beam writing was developed by Prof. Venkat Chan-

drasekhar. The program controls a National Instrument card NI-6052E card8 for communi-

cating with the JEOL JSM-8409 through a home-made electronics box. The analog output

DAC0OUT (DAC1OUT) of the NI-6052E is connected to the X (Y) scan coil input of the

SEM through a buffer amplifier. The single-bit digital output DIO0 (DIO1) is connected to

the external control enable (beam blanker signal). The analog input ACH0 is connected to

the image signal. Figure 3.5 shows the circuit diagram of the electronics box constructed

by the author10. The external control enable signal enables (0 V) and disables (5 V) the

computer control of the X Y scan coil. The beam blanker signal enables (5 V) and disables

(0 V) the beam blanking. The beam blanking is done by an electromagnetic coil to deflect

the electron beam. If the voltage is too small (in terms of absolute value), the beam blanker

will not be able to effectively deflect the beam while too big a voltage will slow down the

beam blanking time. We tune the resistor shown in Fig. 3.5(d) to set the voltage just high

enough to trigger the blanking. At present the voltage is -0.6 V and the blanker works well at

frequency up to 100 kHz at the lowest probe current. At higher probe current the response

time of the beam blanker is longer. The following outlines the steps for e-beam lithography.

(1) Spin MMA/MAA (8.5) at 3000 rpm for 60 seconds for a 160 nm thick coating.

(2) Bake the substrate in a convection oven at 140 ◦C for 30 minutes.

8From National Instrument, Austin, TX.
9JEOL-USA, Peabody, MA.
10This box replaces the old circuit box in Ref. [100].
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Figure 3.5. The circuit diagrams of the SEM control electronics connecting
the NI-6052E card and JEOL 840 SEM. (a) DAC0OUT (card)-X scan coil
(SEM), (b) DAC1OUT (card)-Y scan coil (SEM), (c) DIO0 (card)-External
control enable (SEM), (d) DIO1 (card)-Beam blanker signal (SEM), (e) ACH0
(card)-Image signal (SEM).
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(3) Spin PMMA 950K (4% in anisole) at 6000 rpm for 60 seconds for a 170 nm thick

coating.

(4) Bake the substrate in a convection oven at 170 ◦C for 30 minutes.

(5) Expose the substrate in the JEOL JSM-840 SEM converted e-beam writer at 30

KV. The dosage is from 300 µC/cm2 up to 650 µC/cm2 depending on the size and

geometry of the pattern. The most frequently used value is 400 µC/cm2.

(6) Develop in MIBK:IPA (1:3) for 60 seconds and rinse in isopropyl alcohol for 60

seconds. Spin dry at 5000 rpm for 1 minute.

3.1.4. Plasma etch

For many of the samples, a plasma etch is used for various reasons. After photolithogra-

phy (e-beam lithography), the exposed photoresist (or PMMA) is removed except for a very

thin layer of residue. This will pose a problem for metallization and lift-off. A short-time

O2 or Ar+ plasma etch is used to completely remove the photoresist (or PMMA) residue

while minimizing the unwanted etch on the unexposed photoresist (or PMMA). There are

four etchers built and used in this group. Two etchers are inside two evaporators for in situ

etching while the other two etchers are external. All the etchers are essentially made of two

parallel planar metal electrodes. The sample is attached to one electrode, after the system

is pumped down, O2 or Ar gas is introduced into the chamber and maintained at a constant

pressure. A DC, AC, or RF power supply applies high voltage on one of the electrodes while

the other electrode is kept grounded to generate a plasma. The power supply is turned off

to stop the plasma after a certain time has elapsed. We note that depending on the power
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supply used and the geometry of the etcher, the samples need to be attached to either the

high voltage electrode or the counter electrode to optimize the etching process. The in situ

etchers will be described in Sec. 3.1.5. We only describe the working condition for the two

external etchers here.

The small external etcher can hold a sample of size up to 1 cm × 1 cm. The etcher

is pumped by a sorption pump which needs liquid nitrogen for pumping. Prior to use, the

pump is baked for a few hours for faster and better pumping. Sorption pumps are oil free

and thus can avoid the contamination of the sample by oil. After the chamber is pumped

down, 100 mTorr O2 is introduced in the chamber without closing the pumping valve. As

equilibrium is established, a plasma is started by a dc power supply11 to apply -700 V to the

electrode 2 cm above the sample. The etch rate of PMMA under such conditions is ∼1.5

nm/second. This is measured by using an AFM12 before and after a 30 second etch. The

height difference is 45 nm. For general sample etching, a 30-second etch is used.

The reactive ion etcher (RIE) built by the author can hold samples up to 3′′ in diameter.

The etcher is pumped by a rotary pump. After pump down, O2 is introduced through a

needle valve in the chamber without stopping pumping. After the pressure stabilizes at 100

mTorr, a 100 kHz ac voltage13 with a power of ∼0.11 W is applied to the electrode where the

sample mounted. The counter electrode is 1′′ above the sample. The etch rate for PMMA

for O2 plasma etching in this etcher is ∼50 nm/second. Figures 3.6 and 3.7 show photos of

this RIE.

11SRS PS325 high voltage power supply from Stanford Research Systems, Sunnyvale, CA.
12Purchased from Thermomicroscopes Inc.. Thermomicroscopes Inc. was acquired by Veeco Instruments
Inc. Woodbury, MA, in 2001.
13PE-1000 from Plasma-Therm, Inc., St. Petersburg, FL.
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Figure 3.6. (Color) RIE system designed and constructed by the author. (The
cooling water lines behind the etcher that are not shown here can be seen in
Fig. 3.7.)



87

Figure 3.7. (Color) Inside view of the RIE. (a) Inside view from the top. Teflon
sheet is used as insulation to prevent unwanted arcing. (b) The top piece
consists of the counter electrode, the cover, and the connecting rod. The rod
is adjustable by a set screw to achieve the optimum separation between the
electrode and counter-electrode.



88

3.1.5. Thin film deposition

For most of the samples, after photolithography or e-beam lithography, a thin layer of

metal is deposited in our e-gun evaporator or thermal evaporator. The e-gun evaporator14

is used to evaporate Ti, Au, Al, Py, and Ni. It is equipped with an in situ etcher and a

tiltable sample stage. The thermal evaporator with an in situ etcher is used to evaporate 5N

Au or Al only. For this thesis, all work was done in the e-gun evaporator, thus we will only

describe the evaporation procedure and conditions for the e-gun evaporator. The chamber

is pumped by a diffusion pump for a few hours until the pressure drops to 1 − 5 × 10−7

Torr. For samples that need a plasma etch, 40 mTorr Ar is introduced after closing the

diffusion pump. A 60 Hz AC power supply applies 400 V to the sample stage to generate

a plasma. The sample is etched for 80 seconds. After etching, the chamber is immediately

pumped down. The metal is evaporated by a 3 kW e-gun. The metal is preheated with the

electron beam without opening the shutter. After the desired evaporation rate is achieved,

the shutter is opened to allow metal evaporation to start. After the desired thickness of

metal has been evaporated, the shutter is closed and the power supply is turned off. The

thickness and the evaporation rate is monitored by a thickness monitor. Typical evaporation

rates are 0.4-1.0 Å/s for Ti, 1.5-10 Å/s for Au, 0.4-5.0 Å/s for Al and 0.1-0.6 Å/s for Py and

Ni. The actual rate depends on the condition of the power supply and how well the metal

sits in the crucibles. The amount and position of the metal shots needs to be fine tuned to

achieve an optimum evaporation rate. If more than one type of metal is deposited, at least

20-minute pumping between the two depositions is used.

14Built by José Aumentado. Schematic can be found in Ref. [101].
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Figure 3.8. (a) The grain structures of a Ti/Au film. The Ti layer is 4 nm
thick and Au layer is 44 nm thick. (b) Nonuniform film for a 5 nm thick Au
layer.
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Grain structure is observable in some of the metals such as Fig. 3.8(a). If the film is too

thin, it tends to become nonuniform as in Fig. 3.8(b). The grain structure and uniformity

can be an important factor in achieving good metal-CNT contacts.

3.1.6. Lift-off process

After metalization, the sample is fully covered by the thin film. The unwanted parts of

the film are removed by the lift-off process. Depending on the resist used for patterning, the

lift-off process is different.

For the LOR/Photoresist pattern, the sample is immersed in Photoresist Remover 11654

at 70 ◦C for 30 minutes. Most of the unwanted metal scrap will be lifted-off in this step.

The sample is then transferred to a second bath of Photoresist Remover 1165 at 70 ◦C for

30 minutes. This is to ensure a clean lift-off. Finally the sample is rinsed in DI water and

isopropyl alcohol before being blown dry using N2 gas.

For the PMMA/Copolymer pattern, the sample is immersed in acetone and a syringe is

used to shoot acetone on the sample surface to facilitate lift-off. If the unwanted metal does

not come off immediately, the sample will be soaked in acetone for some time. Depending

on the condition of the PMMA, this time is from 15 minutes up to overnight before the

lift-off can be thoroughly achieved. The sample is then rinsed in clean acetone, followed by

isopropyl alcohol before being blown dry by N2 gas.
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3.1.7. Carbon nanotube sample fabrication procedure

Fabrication of CNT devices uses the same basic techniques described above. But as we

cannot control the positions of the nanotube on the substrate, special procedures have been

developed.

We first photolighographically pattern big gold pads on those substrates that will be used

later for wirebonding. Then we use electron-beam lithography to pattern gold alignment

marks in the central region of the photolithographically defined pattern. The typical design

for the alignment marks is shown in Fig. 3.9(a). Each individual alignment mark is unique as

this can help in finding the exact location without counting the number of marks. MWNTs

obtained from Prof. R.P.H Chang’s group suspended in dimethylformamide (DMF) are

spun on the substrate. Those MWNTs were grown by an arc-discharge method without

catalyst [102]. We then use the high resolution LEO SEM15 to find the MWNTs and map

out their position with regard to the alignment marks. Electrodes connecting the MWNTs

and the big gold pads are designed according to the map and patterned using electron beam

lithography. Figure 3.9(b) shows the AutoCad design pattern and Figs. 3.9(c)(d) show the

actual device. Prior to metal deposition, an O2 plasma etch was performed for 1-10 seconds.

This significantly improves the contacts and the contact resistances decrease from an average

of a few MΩ to below one kΩ. (The contact resistance is further discussed in Chapter 4.)

Why is an O2 plasma etch such an efficient way of improving the contacts? Figure 3.10 shows

a transmission electron microscope (TEM) image of a MWNT that is from the same source

as all our measured MWNTs. We can see a lot of amorphous carbon covering the outside

15LEO Gemeni 1525 located at the EPIC facility at NUANCE center.
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of the CNTs. Our initial guess was the O2 plasma etch removes the amorphous carbon. We

were worried that the O2 plasma etching might etch through the amorphous carbon and

damage the CNTs. However, the subsequent TEM image after plasma etching still shows

CNTs coated with amorphous carbon and the CNTs do not show visible damage from the

etch. Although it is good to know that our tubes are not damaged, this also shows our initial

guess was wrong. We have several possible explanations, but are not exactly sure why the

contacts are improved at this point. One possible explanation is the TEM can deposit a lot

of amorphous carbon. Even though the plasma etch had etched away the amorphous carbon,

it was redeposited during the image process. Secondly, it is possible that the plasma cleaning

process removes the residual PMMA resist left on the CNT surface after the development

process. Finally, we cannot completely rule out that the plasma process will not introduce

defects, as suggested by other groups [103].

3.2. Measurement Setup

Our measurement is carried out both in a 3He refrigerator and a dilution refrigerator.

The 3He cryostat was purchased from Janis Research Company, Inc.16. It can reach 260 mK

at base temperature. The temperature is read out by a homemade temperature bridge [104]

from a 1 kΩ RuO2 thermometer. The samples are mounted on the end of a cold finger that

extends from the 3He pot. A home made proportional-integral-differential (PID) control unit

is used for temperature stabilization. The circuit diagram can be found in Refs. [100,104].

A two-axis magnet which can reach 3 Tesla perpendicular to the sample plane and 1.8 Tesla

16Janis Research Company Inc. Wilmington, MA.
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(a) (b)

(c)(d)

Figure 3.9. (Color) (a) Alignment mark pattern used to locate the CNTs. The
total size of the pattern shown is 50 µm × 40 µm. The size of each mark is 2
× 2 µm2. (b) An AutoCAD design for e-beam patterning. The circled cross is
the corresponding mark in (a). (c) An SEM image of one of our samples. (d)
Zoom-in view of the device.

Figure 3.10. A TEM image of a multiwalled carbon nanotube coated with a
layer of amorphous carbon. Image was taken by Dr. Dmitriy A. Dikin.
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parallel to the sample plane17 is attached to the dewar used by this refrigerator. The magnet

can run in current or voltage mode. A 20 A Kepco bipolar power supply18 or a 1 A Kepco

bipolar power supply19 can be used to energize the magnet.

The dilution refrigerator is an Oxford Kelvinox 300 dilution refrigerator20 and it can cool

the samples down to 15 mK. In this refrigerator, a RuO2 thermometer21 is used to read

out the temperature. The RuO2 thermometer was calibrated against another calibrated Ge

thermometer22. A TRMC2 bridge23 is used to read the temperature with a small current of

only 80 pA at the base temperature. The readout is used as the input to a PID controlling

circuit similar to the one used in the 3He refrigerator if the temperature needs to be stabilized.

To minimize the noise interference, care was taken about grounding and filtering. On the

top of the refrigerator, π-section filters with a cut-off frequency of 5 MHz were installed. The

electrical lines from the π-filters are connected to a breakout box inside a mumetal shielded

box24.

At the beginning of each measurement, the noise is checked by a spectrum analyzer25.

The noise level was recorded for 60 Hz noise and the background noise. The background

noise is then compared with the theoretical noise of the sample plus the noise from the

amplifier. The theoretical noise is composed of three parts: Johnson noise, shot noise and

17From Cryomagnetics, Inc., Oak Ridge, TN.
18Kepco Bop 20-20M, from Kepco, Inc. Flushing, NY.
19Kepco Bop 100-1M, from Kepco, Inc. Flushing, NY.
20From Oxford Instrument Inc., UK.
21Model SMT1206R from Vector Electronic Company, North Hollywood, CA.
22Calibrated by Lake Shore Cryotronics inc. Westerville, OH.
23Purchased from AIR LIQUIDE DTA, France.
24Designed by Sergey Rozhok, manufactured by Amuneal Manufacturing Corp..
25SR760 FFT spectrum analyzer, from Stanford Research Systems.



95

flicker noise [105]. With zero current and ideal resistor R, the shot noise and flicker noise

is zero. The theoretical Johnson noise is < δV 2 >= 4kBTRdω. We need to consider the

Johnson noise of the sample in the refrigerator at low temperature and the Johnson noise

of the balance resistors in the resistance bridge at room temperature. We generally can

minimized the background noise down to 15 nV/
√

Hz, which is close to the 10 nV/
√

Hz

Johnson noise of the sample plus the 4 nV/
√

Hz input noise from the AD 624 amplifier26. A

magnet which can reach 12 Tesla is attached to the dilution refrigerator. The field direction

is perpendicular to the sample plane. After turning on the magnetic field, the noise goes up

as the magnet will generate 60 Hz noise.

For most of the measurements performed in this thesis, the samples were measured by

a four-probe method with ac resistance bridges27. The circuit diagrams of our measurement

electronics are shown in Figure 3.11. The excitation current is generated by a lock-in amplifier

(PAR 12428). The “A” and “B” ports are connected to a AD624 differential amplifier and

sent to the input of the lock-in amplifier. The analog dc output from the lock-in amplifier

is read by a HP multimeter29. We often measure the differential resistance as a function of

dc bias current. The part inside the dashed line box in Fig. 3.11 is used for sending the

bias current. If one is interested only in the zero bias resistance, this part does not need to

be connected. A HP synthesizer30 is used to drive the input of the current source (Figure

3.12(a) shows the circuit diagram of the current source.). As we need to measure the ac

26Manufactured by Analog Devices, Inc., Norwood, MA.
27This is an Adler-Jackson type bridge, based on a General Radio 1433-X or 1433-F decade resistance box.
28From Princeton Applied Research, Princeton, NJ.
29Model 34401A, from Hewlett Packard, Cupertino, CA.
30Model 3325A, from Hewlett Packard, Cupertino, CA.
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resistance as a function of dc bias current, we normally sweep the the voltage by the HP

synthesizer at a very low frequency (0.3 mHz).

Alternatively, we do direct four-terminal measurements using the circuit shown in Figure

3.11(b) as a double check to avoid experimental artifacts. In this case, a summer is used to

sum the ac current excitations with dc bias current. The circuit diagram for the summer is

shown in Fig. 3.12(b).

One challenge in doing low temperature measurements is how can we be sure the temper-

ature reading is accurate. Meticulous calibration of the thermometer is required. But the art

of calibration is beyond the scope of this thesis. Here we only describe several techniques to

ensure the sample temperature is the same as the thermometer. The primary cause for the

difference is heating effect from the current applied to the sample. To avoid this problem, we

do systematic checks. One method is the check the temperature dependence of the sample

resistance down to the base temperature of the refrigerator, if the resistance showed no sign

of saturation while the sample cools down, we can then state the current does not heat the

sample significantly. The other method is using different currents to see if they give the

same result, if heating is absent, the readings should be identical. Another simple rule is to

estimate the voltage across the sample, if the condition eV ¿ kBT , we can safely assume

heating will not be significant.
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RbVac RsB A10 M 10 M
10 M 10 M 10 k V-IconverterVDC

V-IconverterVac V SummerVDC Rs10 k AB

(a)
(b)

Figure 3.11. (a) Circuit diagram of differential resistance measurement by ac
resistance bridge. The part inside the dashed box is not connected for zero
dc current bias measurement. (b) Circuit diagram of differential resistance
measurement by direct measurement. VDC is the dc voltage, Vac is the output
of the lockin amplifier. Ports A and B are connected to the lock in amplifier
input. The circuit diagram of voltage-current converter and voltage summer
can be found in Fig. 3.12.



98
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6
Figure 3.12. Circuit diagram of a homemade electronics utility box. (a) the
current source converts the input voltage Vin to output current Iout = Vin/R,
(R=1 kΩ, 10 kΩ, 100 kΩ, 1 MΩ). Ports V+ and V- are used to determine the
current by measuring the voltage drop over the 10 kΩ resistor. (b) the voltage
summer, whose output voltage is the inverted sum of the input. If one of the
inputs is not used, it should be left floating.
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CHAPTER IV

Results and Discussions

In this chapter our measurement results and discussion will be presented. Over the course

of the thesis work, 102 CNT devices were fabricated. 82 devices appeared to be viable after

the fabrication process on inspection with a SEM and were wirebonded for measurement. Of

these, 32 samples were cooled down in a refrigerator1, from which 29 samples were studied

in detail. We will only show data from a selected subset of these 29 samples. We begin with

the specific techniques to measure these CNT samples2. After the results of MWNTs are

shown, we will present our analysis and interpretation of our findings. This work has been

published in Refs. [106,107].

4.1. Probe Configurations and Data Presentation Format

Our MWNT devices have multiple electrodes. In the early devices, four electrodes were

patterned on each MWNT, enabling four-terminal measurements on those devices. Later

devices with eight electrodes were fabricated because the additional leads provided us the

possibility of measuring the four-terminal resistance of the contacts in addition to the four-

terminal resistance of the device. Compared to the standard two-terminal devices often used

by other groups, our devices allowed measurements that provided much more information

about the device. Figure 4.1 shows a typical MWNT device which has eight leads. The

1Either in the 3He or the dilution refrigerator.
2Techniques that are generally used are discussed in Sec. 3.2.
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leads are numbered to distinguish different measurement configurations. The electronic

circuits for the four terminal measurement can be found in Fig. 3.11. We shall use the

notation Rmn,kl = dVkl/dImn, (Gmn,kl = 1/Rmn,kl = dImn/dVkl) as the differential resistance

(conductance) with leads m, n as the current leads, and leads k, l as the voltage leads. There

is more than one configuration to measure the CNT four-terminal resistance. The most often

used configuration is R14,23 (G14,23), using the outside (inside) leads as the current (voltage)

leads. Classically, this is the configuration that excludes the contact resistance, however, in

mesoscopic devices where the phase coherence length is comparable to the device size, the

influence of contacts cannot be completely eliminated. The dc bias is sent through lead 1

and taken out from lead 4, where lead 4 is ground. Unless otherwise noted, for brevity, R or

R4t (G or G4t), omitting the indices, will be used for the configuration R14,23 (G14,23). I is

used for the dc current I14. R23,14 was also used from time to time to check the consistency

of the device measurement as well as to check the Landauer-Büttiker probe symmetry, also

known as the Onsager symmetry relation as described in Sec. 2.2.3. Other configurations

such as R67,23 (G67,23) were also used occasionally to check the consistency of the data. We

note that configuration R67,23 (G67,23) includes the resistances of the two inner contacts.

The differential resistance of the two contacts was measured using the configuration R23,61

and R23,47. The notation RC1 = R23,61, RC2 = R23,61 will also be used when there is no

danger of confusion. In the early devices, only four electrodes (1,2,3,4) were patterned. In

these devices, it is impossible to directly measure each of the individual contact resistances.

For those devices, the contact resistance RC was estimated from the difference between the
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two-terminal and four-terminal resistance using the equation

RC = (R23,23 −R14,23)/2−Rext, (4.1)

where Rext is the resistance of the wire from the sample stage to the breakout box plus the

resistance of half of the lead resistance in the chip. In the 3He refrigerator, Rext ≈ 180 Ω

for a typical sample. As will be discussed later, the samples are metastable, therefore it

is important that the time interval between different measurement be minimized. Ideally,

measurements of R, RC1 and RC2 should be done simultaneously. We have verified this

by using two or more resistance bridges with ac excitations at different frequencies, but

with a common ground, simultaneous measurements of different sections of the same device

did not interfere with each other. However, in our measurement setup, the “mu-metal

box” had space only for measurement electronics for two simultaneous measurements. The

simultaneous measurements were therefore R with RC1, RC1 with RC2, or R with RC2.

It is advantageous to have a gate control for the CNT devices. A backside gate was used

by making electric contact to the backside silicon as shown in the schematic in Fig. 4.2.

In early experiments, we found the backside gate had no effect on the MWNT resistance.

However, this might have been due to the fact that the silicon wafers were not highly doped

and might have been insulating at low temperatures. Thus highly doped silicon wafers were

used in later experiments.

Although we measure R and I, sometimes it is more convenient to discuss the data in

terms of G and Vdc. This is because the conductance G is directly related to the Landauer
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Figure 4.1. An SEM image of one of our MWNT devices (Sample C). The
numbers are used as indices for referring to different measurement probe con-
figurations.

Figure 4.2. (Color) Schematic of four-terminal measurement of CNT resistance
with a backside gate.
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formula and Vdc defines the energy scale. G is obtained by calculating the inverse of the

resistance R (G = 1/R) and Vdc is obtained by numerical integration of dV/dI versus I. We

further express G in units of e2/h.

Table 4.1 shows R4t, and RC of 14 samples that were measured in detail at different

temperatures. We can see that although those samples were fabricated in the same manner,

their characteristics are different from each other. At room temperature, R4t is 1.3 kΩ for

Sample B and 29.0 kΩ for Sample M. The difference is nearly 30 times. RC also varies a lot

as the lowest in Sample D and highest in Sample E. We note that, for the sample resistances

R4t, they appear to increase with the decreasing temperature. Although this is a general

trend, for some low resistance samples, such as Sample C, this temperature dependence can

be different as will be discussed in Sec. 4.3. For the contact resistances RC , they can either

increase, decrease, or show non-monotonic behavior with decreasing temperature as shown

for Samples E, G, and C respectively. As we believe it is unnecessary to describe all our

samples in great detail as many of them share the same characteristics, we choose Samples

A-E to represent the general characteristics observed in all of our samples.

As an example, Fig. 4.3 shows our preliminary measurement of the sample resistance

and the two contact resistances of Sample C as we cool down the sample from the room

temperature to the base temperature of the dilution refrigerator. As we can see, at room

temperature or liquid nitrogen temperature, the R(I), Rc1(I) and RC2(I) curves are almost

featureless, while at 23 mK, very sharp structures can be observed in all three resistances.

For the MWNT resistance, as the sample cools down, the resistance increases, while for both

of the contact resistances shown here, they decrease as the temperature goes down. Our
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Table 4.1. Resistance table of selected samples at room temperature
(RT), liquid nitrogen temperature (77 K LN2), liquid helium temper-
ature (4 K LHe) or other specified temperature.

Sample Temp R4t(kΩ) RC (kΩ) Sample Temp R4t(kΩ) RC (kΩ)
A RT 2.2 H RT 11.0

LN2 2.4 LN2 18.3
LHe 4.9 1.0a LHe 44.0 3.8a

300 mK 6.3 300 mK 70.0
B RT 1.3 I RT 7.1

LN2 2.3 LN2 11.0
LHe 3.1 0.9a LHe 19.0 1.0a

300 mK 3.6 300 mK 39.0
C RT 1.78 0.247 0.326 J RT 3.1 0.7a

LN2 2.03 0.206 0.158 LN2 4.4 0.5a

12 K 2.06 0.173 0.133 12 K 6.4 0.25a

18 mK 3.00 0.700 0.122 18 mK 8.3 0.35a

D RT 1.31 K RT 2.23
LN2 1.42 LN2 3.76
LHe 1.75 0.1a LHe 6.8 1.0a

300 mK 1.71 300 mK 13.0
E RT 5.5 0.40 0.30 L RT 5.6 0.20 0.15

LN2 8.3 0.60 0.50 LN2 13.0 0.73 0.48
300 mK 28.0 5.0 6.0 300 mK 36.0 5.40 1.40

F RT 2.9 0.40a M RT 29.0 0.20 0.30
14 K 3.6 0.44a 14 K 35.0 0.19 0.22

G RT 2.65 0.185 0.38 N RT 2.6 0.20 0.18
LN2 4.69 0.155 0.34 LN2 5.0 0.46 0.36

300 mK 8.26 0.140 0.31 300 mK 11.7 0.70 0.60
a Estimated by Eqn. 4.1
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Figure 4.3. (Color) (a) The sample resistance R, (b) the contact resistance RC1

(c) the contact resistance RC2 of Sample C as a function of dc current I. The
red (blue) curve is the data measured at room (liquid nitrogen) temperature.
The green curve is the data measured at 23 mK, which is close to the base
temperature of our dilution refrigerator.
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main interest has been to study the low temperature behavior and the underlying physics of

those features.

For low temperature measurement of samples with resistances on the order of kilo-ohms,

special care needs to be taken to avoid measurement artifacts. Before measurement, the

electronic circuits are checked carefully. The offsets of the amplifiers are minimized to the

level of 0.2 nA, which corresponds to 2 µV for a 10 kΩ sample. By using different ac

excitation currents, different probe configurations, and different electronic circuits, we are

confident that no unwanted heating of the samples occurs, no shorts exist in our samples,

and our electronic circuits function correctly. Only after these careful measures were taken,

did we proceed to detailed, systematic studies. The current heating should not be significant

if the voltage across the sample satisfy the relation eV < kBT . Figure 4.4 shows two traces

of the measurement with different ac excitation current as 0.2 nA and 1.0 nA on Sample

C. We can see there is little difference between the two curves, which confirms heating

from the ac excitation current is not significant in our samples. Figure 4.5 shows that

the four terminal resistance R14,23 is consistently lower than the configuration R67,23, which

includes the two inner contact resistances RC1 and RC2. This makes sense as the four-

terminal resistance should be lower than the resistance including the contacts. However, the

difference is not constant as a function of I, which indicates the contact resistances vary

as a function of I. Our direct measurements of contact resistances confirm this conclusion.

Figure 4.6 shows the ac resistance bridge (circuit diagram shown in Fig. 3.11(a)) and the

direct four-terminal measurement of Sample C with the same parameters (circuit diagram

shown in Fig. 3.11(b)). We can see the two curves closely resemble each other. The small



107

Figure 4.4. (Color) Measurements of Sample C at 15 mK with ac excitations
of 1.0 nA, and 0.2 nA, respectively
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Figure 4.5. (Color) Measurements of Sample C at 17 mK with configurations
R14,23 (Red solid curve) and R67,23 (Blue dotted curve). The dc bias current I
is I14
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difference is due to a switching effect with the sample which will be discussed later. We

conclude that our measurement circuits are good.

4.2. Multiwalled Nanotubes with Contact Resistances 1 kΩ or Higher

As an example of sample with high contact resistances, we first discuss Sample A. Figure

4.7 shows the four-terminal MWNT resistance at zero bias as a function of temperature.

The resistance R increases monotonically when the temperature decreases. If the MWNT

is semiconducting, it should obey thermal activation conducting behavior which is governed

by the formula [24],

1/R = G ∝ exp(− Eg

kBT
), (4.2)

where Eg is the energy gap. 1D, 2D, and 3D variable range hopping models were also used

to fit our data. For variable range hopping, the temperature dependent conductance is given

by [108]

1/R = G ∝ exp(−(T0/T )
1

d+1 ), (4.3)

where T0 is a constant which depends on the localization length ξ and d is the sample

dimensionality with respect to the localization length ξ. As we can see in Fig. 4.7, none of

the above models give good fits. Therefore new physics must be present.

From the discussion in Sec 2.2.4, 2.2.6, and 2.3.5, we know that experiments have shown

that at low temperature in the tunneling regime, the conductance of CNTs is suppressed at



109

2200

2400

2600

2800

3000

3200

-4 -3 -2 -1 0 1 2 3 4

AC resistance bridge
Direct measurement

R (
Ω

)

I (µA)

16 mK

Figure 4.6. (Color) dV/dI vs I measurements on Sample C at 16 mK by an
ac resistance bridge (red curve), and direct four-terminal measurement (blue
curve).
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Figure 4.7. (Color) The temperature dependence of a high contact resistance
Sample A with fits to thermal activation model, 1D, 2D, and 3D variable range
hopping.
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zero bias. A power law dependence of conductance has been found in both SWCNTs and

MWNTs [57,93]. In the samples shown in Table 4.1, the contact resistances are much less

than RK=25.898 kΩ and so the sample is not in the tunneling regime. Occasionally, we

have a “bad” sample with much high contact resistance. The characteristics are similar to

those observed by other groups. We have found zero bias suppression in these samples with

relatively high contact resistances. They are only absent in samples with contact resistances

smaller than 400 Ω.

For Sample E with high contact resistances (the conductance of Sample E is similar to

Sample A shown in Figs. 4.9(a)(b)), the contact conductance G = 1/RC1(,C2) varies as a

function of bias current I = I23 as shown in Fig. 4.8(a). The contact conductances show

highly asymmetric behavior as a function of dc bias current. Both C1 and C2 show that

when the bias current is going from the electrode to the MWNT, the conductance is high

and when the current is reversed, the conductance is much lower. One possible explanation

is a Schottky barrier appears between the CNT and the metallic electrodes. A Schottky

barrier is formed when a metal comes in contact with a semiconductor. As the electron

density in metal is much higher than in the semiconductor, the electrons diffuse from the

metal to the semiconductor until a charge barrier is formed and the chemical potentials on

both sides are equal. The electron-like negative charges accumulate at the surface of the

semiconductor while the positive charges accumulate at the surface of the metal. Depending

on the separation between these two layers of charges, the barrier can be small or big. For a

Schottky barrier, the forward bias narrows the width of the barrier. Thus the forward bias

configuration has higher conductance and the reverse bias has lower conductance. As the
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Figure 4.8. (Color) For Sample E with a high average contact resistance of 5
kΩ, (a) The contact conductance C1 and C2 as a function of dc bias current
I at 330 mK. Here I = I23 and GC1, GC2 is defined in Sec. 4.1. (b) The
differential conductance and the contact conductance as a function of backside
gate voltage Vg. The correlation of the random fluctuations between the CNT
and C1 is 0.66. Between the CNT and C2 is 0.27 and 0.22 between the two
contacts C1 and C2.
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voltage bias is much larger than the Schottky barrier height, the difference between forward

bias and reverse bias will disappear. The work function of the materials and the geometry

of the contact determine the height of the barrier. But the barrier also can be strongly

influenced by impurities at the interface. A large device to device variation is expected.

Semiconducting SWNTs have been found to form a Schottky barrier when in contact with

a metal [17] or another metallic SWCNT [109]. A strong rectifying effect has also been

observed in the junctions between a semiconducting SWCNT and a metallic SWCNT [109].

Although this theory is appealing, we cannot rule out other possibilities such as thermopower

effects. The current actually heats the part of the sample of which results in an antisymmetric

component of the conductance [104].

The gate voltage dependence of the sample conductance and contact conductances of

Sample E is shown in Fig. 4.8(b). Without considering the fluctuation that appears to

be random, the conductance of the whole MWNT device and both contacts show weak

dependence on gate voltage, with slightly higher conductance at high positive gate voltage.

This might be because it is a n-type semiconductor for the outermost shell.

All the above results of MWNT devices with high contact resistances are close to other

groups’ findings.

4.3. Multiwalled Nanotubes with Contact Resistances below 1 kΩ

The characteristics of samples with contact resistances higher than 1 kΩ are fairly similar

to other groups’ findings [93]. However, for samples with contact resistances below 1 kΩ, the

behavior is fairly different and interesting. Figure 4.9 shows representative behavior of four
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Figure 4.9. (Color) Differential conductance G vs voltage Vdc at two tempera-
tures ((a)(c)(e)(g)) and zero-bias conductance vs temperature T ((b)(d)(f)(h))
for four different MWNT devices in decreasing order of contact resistances at
4 Kelvin. (a)(b) Sample A with an average contact resistance around 1 kΩ,
(c)(d) Sample B with contact resistance around 900 Ω, (e)(f) Sample C with
averaged contact resistance around 400 Ω, (g)(h) Sample D with contact re-
sistance around 100 Ω. Adapted from Ref. [107].
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devices. The left column ((a)(c)(e)(g)) shows the conductance G as a function of dc voltage

bias Vdc at two different temperatures. The right column ((b)(d)(f)(h)) shows the measured

zero-bias temperature dependence. The graphs are arranged in order of decreasing contact

resistance. We can see the characteristic evolves with decreasing contact resistances. For

Sample A with an average contact resistance at 1 kΩ, the conductance is nearly symmetric

with a dip at zero bias. The dip goes deeper at lower temperature. The temperature

dependence of G is monotonic, decreasing with decreasing temperature. For Sample B with

900 Ω contact resistances, the conductance still has a dip at zero bias, but we can see a small

peak close to the dip and the shape is no longer symmetric with respect to zero bias. The dip

drops lower and the peak goes higher at lower temperature. The temperature dependence

of the conductance G is still monotonic decreasing with temperature. For Sample C with

contact resistances at around 400 Ω, there are many more features and the features becomes

sharper as the temperature decreases. However, for this sample, the temperature dependence

is not monotonic. (We note that this sample shows metastable behavior. Both monotonic

and nonmonotonic behavior was observed in the same sample.) After the sample is cooled

down below 2 K, the conductance starts to increase, which is a typical signature of transport

through a resonant state. The last sample, Sample D with contact resistances below 100 Ω,

shows even more features and the turning point from decreasing conductance to increasing

conductance is at around 4 K. We note that, the sharp features were only observed with low

contact resistance samples at very low temperatures in a dilution refrigerator. This might

be the reason why they have not been previously observed by other groups.
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Figure 4.10. (Color) For Sample C with low contact resistance, (a) the simulta-
neous measurement of the CNT conductance and contact 1 (C1) conductance
at 25 mK. (b) the simultaneous measurement of the CNT conductance and the
contact 2 (C2) conductance. The correlation is -0.96 for CNT and C1 curves
in (a) and 0.81 for CNT and C2 curves in (b).
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We also performed direct four-terminal measurements of the contacts and the MWNT.

As discussed in Sec. 4.1, we can only do two simultaneous measurements at the same time.

Figure 4.10(a)(b) shows two consecutive simultaneous measurements. We found the sample

behavior changed after the first measurement (See the difference between the measured

conductance of MWNTs in Fig. 4.11(a) and (b). Both are quite different from the data

shown in Fig. 4.9(e)). The cause of the change will be discussed later. As we can see, there

are correlations between the sample resistance and the contact resistances. The correlation

is -0.96 for the CNT and C1 curves in Fig. 4.10(a) and 0.81 for CNT and C2 curves in Fig.

4.10(b). The strong correlation reflects the long range phase coherence in the sample.

In addition to the large sample to sample variation shown in Fig. 4.9, the behavior in the

same sample changes on different cooldowns. Figure 4.11 shows the conductance of Sample

C in Fig. 4.9. Figures 4.11(a)(c) correspond to the first cooldown and Figs. 4.11(b)(d)

correspond to the second cooldown, after warming up the sample to room temperature. The

major feature in Fig. 4.11(a) is the conductance peak at around Vdc = −25µV . This feature

grows as the temperature decreases. However, at zero bias there is a dip that also becomes

sharper with decreasing temperature. Therefore the temperature dependence of G decreases

with decreasing temperature as shown in Fig. 4.11(c). Figure 4.11(b) shows the conductance

peak in Fig. 4.11(a) turns into a conductance dip on the second cooldown. The temperature

dependence in Fig. 4.11(d) now increases with decreasing temperature, corresponding to the

peak at zero bias. We note that for both the peaks and dips, the shapes look asymmetric.

This feature turns out to be very important as will be discussed later.
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Figure 4.11. (Color) (a)(b) Three-dimensional representations of the differen-
tial conductance of Sample C as a function of voltage and temperature. (a)
is on the first cooldown, at 20 mK, and (b) is on the second cooldown, at 16
mK, after warming the dilution refrigerator to room temperature. (c) and (d)
are the corresponding temperature dependence of the zero-bias conductance.
Adapted from Ref. [107].
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We also found that it is not necessary to warm the sample to room temperature to see

such changes. Warming up the sample to merely a few Kelvin can cause changes in the con-

ductance, although generally not as dramatic as in Fig. 4.11(a)(b). This can be understood

as arising from thermal annealing of the sample impurities or defects. At low temperature,

the positions of the impurities or defects were in a certain configuration. When the tem-

perature increases, the impurities or defects acquire more energy and become mobilized.

After the sample is cooled down again, the impurities or defects will be “frozen” into a new

configuration. It is evident that the features are associated with impurities or defects in

the sample. For the most active impurity or defect, it can change as a function of time on

the order of a few hours or a few days. This is also the reason why the CNT resistance

in Fig. 4.11(a) and (b) are different. This interpretation also fits well with the random

telegraph noise observed in the samples as shown in Fig. 4.12. If the impurities or defects

can switch to different states as a function of time, a shift of impurity or defect position over

the length scale of λF (λF is the Fermi wavelength) can result in a shift in the phase of the

electron scattered from that impurity. This will cause a change in conductance on the order

of e2/h [110]. So the change of the active impurity of defect can be observed as a change in

conductance on the order e2/h just as shown in Fig. 4.12. The time dependent conductance

changes are also known as “random telegraph noise” and have been observed in disordered

metals [111].

For further investigation of quantum interference effects, one needs a “knob” such as

a gate or a magnetic field that modulates the relative phase between different paths an

electron can take. The random fluctuation may be a manifestation of the modulation of
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Figure 4.12. Time dependence of the zero-bias conductance of Sample C. Data
taken at 35 mK.
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Figure 4.13. (Color) (a) Magnetoconductance of Sample C at 25 mK. (b) Low
field magnetoconductance of the same device at low fields with two different
measurement configurations as noted. G67,58 has been shifted up by 1 e2/h
for clarity. (c) Average of the sum and difference of the two traces shown in
(b), demonstrating the symmetric and antisymmetric combinations obtained
using the Landauer-Büttiker relations. (d) Autocorrelation function of the
magnetoconductance data of (a). The correlation field ∆Bc is 1.05 T. Adapted
from Ref. [107].
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the interference by a gate voltage as described in Sec. 2.2.5. The interference can also

be tuned by applying a magnetic field. Figure 4.13(a) shows the magnetoconductance of

Sample C at 25 mK. Large variations can be observed. It appears that the conductance is

symmetric with B = 0. But closer inspection reveals that there are asymmetries in the data.

This asymmetry is much more obvious with the data taken over a smaller range. (Data in

Figs. 4.13(a),(b) are taken on different cooldowns.) G67,58(B) and G14,23(B) are measured

simultaneously while sweeping the magnetic field. As 1 and 5, 2 and 6,3 and 7, and 4 and 8

are connected together (See Fig. 4.1), from the Landauer-Buttiker relation, we have

G67,58(B) ≈ G23,14(B) = G14,23(−B), (4.4)

as given by Eqn. 2.41. Therefore (G14,23(B)+G67,58(B))/2 should be nearly symmetric while

(G14,23 −G67,58)/2 should nearly antisymmetric with B = 0, just as shown in Fig. 4.13(c).

4.4. Discussions: Fano Resonances

From our previous brief discussions of our MWNT devices, it appears that the results

can be explained by the physics of quantum transport in a diffusive system. However, a

close inspection and in-depth analysis reveals several inconsistencies. First, in looking at

the G(Vdc) curves, Figs. 4.9(c)(e)(g), it can be seen that the amplitude of the conductance

fluctuations changes only in certain narrow ranges in dc bias with decreasing temperature,

rather than over the whole range of Vdc. As an example, for Sample B in Fig. 4.9(c),

the change of the conductance outside the voltage range [-2mV, 2mV] is very small, but

inside this range, the conductance changes dramatically with changing temperature. Similar
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behavior can be observed for Sample C and D in Fig. 4.9(e)(g). As we know, in a diffusive

system, the amplitude of conductance fluctuations grows in the whole energy range [40].

In addition, in Fig. 4.13(a) the rms amplitude of the conductance fluctuation is 1.3 e2/h,

which is very close to theoretical calculation 1.4 e2/h when lT , lϕ À L (from Eqns. 2.58 and

2.59). This appears to be supportive of quantum interference in the diffusive regime at first

look; however, this implies that lϕ À L, where L=450 nm is the length of the CNT section

between the two inner electrodes 2 and 3 in Fig. 4.1. From the expression for the correlation

field ∆Bc (Eqn. 2.62) and the measured value from our experiment ∆Bc =1.05 T in Fig.

4.13(d), we can calculate that the phase coherence length lϕ ≈ 160 nm for the width W ≈ 25

nm of the MWNT, a factor of three smaller. Therefore, quantum interference in a diffusive

system is unlikely to be the correct explanation for our results.

In summary, we observe large sample to sample variations of the conductance in MWNTs.

Even in a single device, the sample characteristics change on thermal cycling and as a function

of time. Conductance peaks and dips are seen as a function of bias. These peaks or dips do

not necessarily occur at zero bias and are generally asymmetric with respect to the center of

the peak or dip. These distinguishing characteristics rule out some more conventional models

such as the Kondo effect to explain our data [89,112] (for example, the Kondo resonances

always occur at the zero dc bias).

The model that we believe best explains our data is based on the interference between

a path that is directly transmitted an appreciable distance along the MWNT and a path

that is transmitted via a resonant state with a well defined energy E0, the so-called Fano



123

resonance as described in Sec. 2.2.7. The Fano conductance is decribed by Eqn. 2.93,

GFano(E) =
2e2

h
Td
|2(E − E0) + qΓ|2
4(E − E0)2 + Γ2

, (4.5)

where q is the complex Fano parameter and 2e2

h
Td ≡ Gd. The Fano resonance lineshape de-

scribed by the equation above can explain the structure we see in the differential conductance

of our devices: (1) the resonance can occur at finite bias as the energy of the resonant state is

not necessarily zero; (2) in the limit |E −E0| À Γ, the contribution from the resonant state

is essentially zero and the conductance goes to G ∼ Gd, as one would expect off-resonance;

and (3) on resonance (E = E0), the conductance can be either a peak or a dip depending

on the modulus or phase of the Fano parameter q.

However, in real experiments, phase incoherent transport also takes place, so that one

must write [66],

Gtotal = Ginc + GFano, (4.6)

where Ginc is the conductance of the incoherent channels that do not interfere with the

resonant state. In analyzing the differential conductance of our own devices quantitatively,

we have the problem of subtracting the background differential conductance, the part of the

differential conductance not associated with the Fano resonance.

To subtract the slowly varying background for Sample C, for example, we use a low pass

fast fourier transform (FFT) filter to subtract the background. The technique is as follows.

We use a low pass FFT with a cutoff frequency at 30 mV−1 for the differential conductance
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Figure 4.14. (Color) (a) Differential conductance data for Sample C on the
first cooldown. Data taken at 20 mK. The dashed line shows the background
calculated from the FFT, as described in the text. (b) Similar curves for the
conductance dip observed on the second cooldown of Sample C at 16 mK.
Adapted from Ref. [107].
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data outside of the voltage range ([-0.1 mV, -0.02 mV] for conductance peaks and [-0.05 mV,

0.02 mV] for conductance dips) over which the resonance occurs. We then perform a reverse

FFT to obtain the background. The result of this process is shown as the dashed lines for

the conductance peak and dip, which is represented by the solid lines in Fig. 4.14 for Sample

C. The assumption of this numerical process is that the background varies slowly while the

feature caused by Fano resonance is very sharp. We believe that the resulting slowly varying

background is a better approximation than simply assuming a flat background over the same

voltage range.

After this background subtraction, the value of the conductance far off-resonance after

the background subtraction process described above would be zero, since we have also sub-

tracted any off-resonance contribution of the direct transmission of the Fano resonance, the

contribution corresponding to Gd = (2e2/h)Td. We do not know for sure the value of Td

as we cannot determine how many channels contribute to transport coherent. However, we

believe that the total number of conducting channels is small, and the transport in these

channels is highly ballistic. Otherwise, the amplitude of the Fano resonance would be much

larger. Since there is only one resonance peak or dip that is prominent, it is a safe to assume

that only one resonant state contributes. We assume that two channels interfere coherently

with the resonant state, each with a conductance of 2e2/h. Consequently, the conductance

curve should be offset by 4e2/h.

Figure 4.15(a) show the background-subtracted data with an offset of 4e2/h for both the

conductance peak and the dip at 20 mK and 16 mK respectively, along with the best fits to

the Fano functional form, Eqn. 4.5. For the dip, the modulus of the complex Fano factor
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Figure 4.15. (Color) (a) Open symbols; data for the conductance peak and
dip of Fig. 4.14 after the subtraction of the backgrounds shown by the dashed
curves in Fig. 4.14, with an offset of 4 e2/h added. Solid lines, fits to the Fano
formula, Eqn.(4.14). Fitting parameters for the peak are |q|=0.66, θ=1.61
and Γ =6.9 µeV, and |q|=1.50, θ=1.69 and Γ =13.6 µeV for the conductance
dip. (b) Temperature dependence of the fitting parameters Γ and |q| for the
conductance dip of (a). The solid line is a fit to the data, giving Γ = 22.9×T 0.21

µeV. Adapted from Ref. [107].
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is |q| = 0.65, while the phase θ of q is nearly π/2 (1.61). This value for θ corresponds to a

phase difference of about φ = π/2 (1.507) between the direct and resonant channels.

Figure 4.15(b) shows the fitted values of the modulus of the Fano parameter |q| and

the linewidth Γ as a function of temperature for the conductance dip of Fig. 4.15(a). The

phase of the Fano parameter θ is essentially a constant at π/2 (1.58 ± 0.06) over the entire

measured temperature range. Γ decreases with decreasing temperature while q first decreases

and the saturates at low temperatures. We note that the Fano formula Eqn. 4.5 did not

consider the influence of the temperature. One would expect a thermal broadening at finite

temperature with the form

G(V, T ) =

∫
GFano(E)

(
−∂f(E − eV )

∂E

)
dE, (4.7)

where f(E) is the Fermi function. At temperatures T À Γ/kB, the effective linewidth of the

resonance should be approximately 3.5 kBT . At T= 1 K, for example, the effective linewidth

should be ∼ 300 µeV. However we obtain a much smaller value ∼ 22 µeV. Obviously, our

attempts to fit our data to the temperature dependent equation, Eqn. 4.7 failed.

We now analyze the origin of the resonant state. The metastable nature of the conduc-

tance seen in some of our devices suggests that it might be related to bound states caused

by defects or impurities We attempted to locate the locations of the impurities by using

different probe configuration and theoretical analysis. However, due to the non-local nature

of phase coherent transport, this attempt was not successful.
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Figure 4.16. (a) Magnetoconductance of Sample C, at 25 mK (reproduction of
Fig. 4.13(a)). (b) Autocorrelation function of the data in (a), < G(B)G(B +
∆B) > / < G(B)2 >, after a sixth-order polynomial background has been
subtracted. (c) The PSD of the magnetoconductance data of (a), after a sixth
order polynomial background has been subtracted. The arrows in (b) mark
the period of magnetoconductance oscillations; the corresponding arrows in
(c) mark the frequency. Adapted from Ref. [107].
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As we noted earlier, quantum interference effects can be modulated by a magnetic field.

For Fano resonances, there has been elegant experiment on systems where a quantum dot is

embedded in an Aharonov-Bohm interferometer, demonstrating that Fano resonances can be

modulated by external magnetic field [96]. Although the interference paths in our devices

are not as clearly defined as there is no spatial separation between these paths, we tried

to understand that the large oscillations in the magnetoconductance observed in our de-

vices by an Aharonov-Bohm modulation of the Fano resonance. As we discussed earlier, the

amplitude of the variations in the magnetoconductance is much larger than the amplitude

expected from UCF in a diffusive conductor. We also found that superimposed on top of the

background fluctuations of the magnetoconductance are periodic oscillations. This can be

seen clearly by looking at the autocorrelation functions and the FFTs of the magnetocon-

ductance. Figure 4.16 shows the magnetoconductance, autocorrelation function and power

spectral density (PSD) of the magnetoconductance of Sample C whose data have been shown

already in Fig. 4.13. A sixth-order polynomial background has been subtracted from the

data before performing the autocorrelation and FFTs. Periods corresponds to 0.8 Tesla and

its multiples such as 1.6 Tesla and 2.4 Tesla can be clearly seen in the autocorrelation and

the PSD. The first three multiples have been marked as “1”, “2”, and “3” in Figs. 4.16(b)(c).

We believe that this period corresponds to a modulation of the phase of the Fano resonance

by the magnetic field. For a normal metal wire with the same dimension as our MWNT,

the period of 0.8 T corresponds to the penetration of a single normal flux quantum h/e over

length scale of approximately 160 nm given an estimated width of 25 nm of the MWNT.

This 0.8 T oscillation can be seen in Fig. 4.17. We can see a quasi-oscillation with a field
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0.8 T. The shape of G(Vdc) changes which is to some extent similar to the Fano resonance

modulated by magnetic field [113].

Fano resonances in CNT devices have been reported by three other groups [113–115].

Kim et al. [113] observed a Fano resonance in two of their devices. The authors concluded

that the Fano resonances are associated with the presence of a MWNT cross, as they did not

observe Fano resonances in the other devices without a MWNT cross. In this paper, however,

the mechanism that gave rise to the resonant state was not clear. Yi et al. [114] measured the

conductance of crosses consisting of metal electrodes patterned across MWNT bundles. In

two of these devices, they observed a non-monotonic behavior of the conductance near zero

bias, which they ascribed to the Fano resonance from interference between a Kondo resonance

and non-resonant channels. More recently, Fano resonances have been observed in single-

walled nanotubes [115]. The authors speculated that the interference might occur between

two transport subbands in a single SWCNT, or between transport channels on different

SWCNTs in a SWCNT bundle. We note that, in all these experiments, the metastable

behavior we observe was not reported. The origin of the resonant states are obscure.

By now, we have established that the sharp features we observed are an interference effect

from transmission through a resonant state and direct transmission with the theoretically

predicted value expected for a metallic CNT shell of 4e2/h. The resonant state is associated

with defects or impurities which can change due to thermal annealing or as a function

of time. This picture assumes ballistic transport with a conductance of 4e2/h. As the

ballistic transport in MWNTs seems still controversial as described in Sec. 2.3.2 and 2.3.3,

and the setup of our devices seems to resemble more the devices which showed diffusive
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Figure 4.17. (Color) The differential conductance curve of Sample C at 0 (top),
0.1, 0.2, 0.3, 0.4, 0.45, 0.475, 0.5, 0.525, 0.55, 0.6, 0.7, 0.8(bottom) Tesla. The
units of the magnetic field in the figure are Gauss. The data (0-0.7 Tesla) are
offsetted e2/h from adjacent data for clarity. The black lines are the guide
lines for Aharonov-Bohm oscillations.
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transport [62,79], it is fair to ask that whether this assumption is valid or not and how can

we explain this “apparent” discrepancy.

As we know, SWCNT can be metallic or semiconducting depending on chirality as dis-

cussed in Sec. 2.1, and MWNT consists multi-shells which individually can be metallic or

semiconducting [76]. We propose a similar model as in Ref. [92]. Our MWNT samples

with low contact resistance actually have contacts with more than one shell. The outermost

shell is very disordered and the transport is incoherent, which is the background resistance

we subtracted in Fig. 4.14. The inside shells are clean and the transport is ballistic. The

resonant states can be caused by the probes, from which the electrons can either go to the

inside shell directly or go to the outermost shell first, then to the inside shell and and be

resonantly transmitted. Alternatively, the electrons in the clean shell can either go to the

higher subbands in the same shell and come back, or go to the next shell then come back.

This can also result in Fano resonance lineshape as in Ref. [68].

This model can also be one of the possible explanations to reconcile that both ballistic

and diffusive transport are observed in MWNTs: for the experiments in Refs. [62,79], the

electrodes are patterned on the outside shell of the MWNTs, which has lots of disorders.

Therefore diffusive transport was observed. We note that this is similar to our high contact

resistance Sample A. For the experiments with different configurations as in Ref. [47], the

MWNT stuck out from a bundle. Electrical contact could be at the end of the CNT, which

could be open and allow connection to an inside shell. The other end is dipped into liquid

mercury, which might be able to diffuse into the inner shell. Obviously, further research is

needed to support this speculation.
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CHAPTER V

Summary and Outlook

5.1. Summary

We have studied the electronic transport behavior of MWNTs. Our multielectrode de-

vices allowed us to make four-terminal measurement of the MWNT and the contact re-

sistances of the device. Because of the multitermianl configuration, we were able to do

measurements in a way that is much more informative than the majority of the experiments

done by other groups. We developed methods to achieve low contact resistances by using a

short time O2 plasma etch. Some of our MWNTs were cooled down in a dilution refrigerator

down to 16 mK, which has been done only by a few other groups [78].

The differential conductance of the MWNTs was measured at low temperatures, as a

function of the dc bias voltage, temperature and the magnetic field. We found that although

the CNT devices we fabricated were nominally the same, their transport properties were

quite different. The transport properties showed a distinct evolution as a function of the

contact resistance. In our studies, we focused on phenomena not previously observed by

other researchers. Sharp features such as a prominent peak or dip were observed in low

contact resistance samples at the base temperature of the dilution refrigerator. The key

characteristics of these features were the following: (1) the features appeared at non-zero
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bias; (2) they had asymmetric lineshapes; (3) the conductance was metastable. These char-

acteristics ruled out other more familiar models such as the Kondo effect. The features are

best described as arising from Fano resonances that result from interferences between direct

transmission paths and resonant transmission paths. The resonant state was due to impu-

rities. However the locations of these impurities were not known due to non-local effects.

We further proposed a model which can account for the origin of the ballistic transport in

MWNT as well as a possible explanation for the controversial results obtained by differ-

ent groups. However, this model needs further testing. Regarding the controversy about

whether MWNTs are ballistic conductor or diffusive conductor requires further study. In

our experiments, we conclude that the impurities play an important role in the transport

properties of the MWNTs. It would be very interesting to actually “see” and locate those

impurities. A low temperature STM can be used for this purpose as this technique has been

used image the electronic wavefunctions in CNTs [116] and charge states in CNT quantum

dots [117].

There are also many other open questions which have not been studied. For example,

what is the mechanism of conduction between shells of the MWNTs? Although there have

been some preliminary studies on this subject [118], this problem remains largely unexplored.

There are also suggestions that transport in MWNTs depends on whether different shells

are commensurate or incommensurate [37,38], leading to MWNTs that are either ballistic

or diffusive. Experiments which can relate the atomic structure and electrical properties of

MWNTs have yet to be performed.
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In this thesis, electron transport in MWNTs was the focus of our research. Interesting

quantum effects were shown in our experiments. These quantum effects give some insight

into the transport properties of MWNTs. Nevertheless, there is a lot of work that remains

to be done. For example, in this thesis, SWCNTs were not systematically studied, and part

of the reason is due to our limited access to high quality SWCNTs. As the technology of

synthesizing SWCNTs by chemical vapor deposition becomes more accessible, it would be

interesting to study electron transport in SWCNTs.

5.2. Outlook of Future Work

The improvement of current experiments discussed in the previous section is a natural

evolution of this current research. There are many other interesting topics involving new

CNT physics that will be discussed here.

Because of the expected low spin-orbit coupling in CNTs, they are viewed as a potential

candidate for spin electronic devices. There have been a number of experimental studies of

spin transport in CNTs. Tsukagoshi et al. [119] fabricated the first spin transport device

on a MWNT. Other experiments [120,121] followed their work in MWNTs. Spin transport

in SWCNTs has also been studied very recently [122]. In these experiments, however, the

data were not clean. This is because it is very difficult to make good contact to CNTs.

As we have developed methods to fabricate good contact to MWNTs, we are interested in

doing research in spin transport in CNTs. A preliminary device with MWNT connected to

ferromagnetic materials Ni is shown in Fig. 5.1(a). The two Ni bars have different switching

fields, so the device is a CNT spin valve device. The gold electrodes at the two ends of the
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(a) (b)
(c) (d)

Au Ni CNT CNT Al
CNT Au Al AuInAs NW

Figure 5.1. (a) A MWNT spin valve device with a long and thin Ni bar and
a short and wide Ni bar. (b) A MWNT device with Al electrodes to form
SQUID shape device. (c) Device to measure MWNT thermopower. (d) A
multiprobe InAs NW device.



137

CNT enable us to measure the contact resistances. Unfortunately, the data did not show

the expected spin valve effects. A possible cause of this failure might due to the fact that

our contacts were not perfect.

Connecting superconducting leads to CNTs brings interesting physics. The supercon-

ducting proximity effect [123] was observed by connecting SWCNTs to superconducting

electrodes [124]. A supercurrent was also observed by a different group [125,126] in SW-

CNT ropes connected to a superconductor. However, no other research groups observed the

supercurrent in similar devices until very recently, when Jarillo-Herrero et al. [127] used

a multiple-stage filtering system to suppress electronic noise and observed gate modulated

supercurrent in CNT devices. The superconducting proximity effect was also observed in

MWNT devices [128], although suppercurrent was not observed. The most controversial

experiments are intrinsic superconductivity found in SWCNT ropes [126,129], which was

only reproduced by a different group on entirely end-bonded MWNTs very recently [130].

We fabricated MWNT devices connecting to an Al loop as shown in Fig. 5.1(b). For phase

coherent transport, we expected to see resistance oscillations as a function of magnetic flux

inside the loop. However, this oscillation was not observed. We instead observed some hys-

terical behavior with oscillations [131]. This effect is not understood and further study is

needed.

The thermopower of CNTs is another interesting subject which is often overlooked by

the research community. There are only a few experiments concerning thermopower in

CNTs [132–135]. The author has fabricated devices to measure CNT thermopower as

shown in Fig. 5.1(c). Our measured value was comparable to that measured earlier [132].
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We observed interesting oscillations as a function of a magnetic field along the tube axis.

The technique of the thermopower measurement can be found in Ref. [99].

Beside CNTs, there are other interesting nanomaterials such as inorganic nanotubes

(NTs) and semiconductor nanowires (NWs). The most well characterized inorganic NT

is boron nitride NT. It is a close analog to CNTs, but unlike CNTs which can be either

metallic or semiconducting, boron nitride NTs are wide gap semiconductors (Eg=5.5 eV),

independent of the diameter. They are more like insulators. Boron nitride NTs were proposed

to be put inside or outside carbon nanotubes for insulation.

Semiconductor NWs can be synthesized as a single crystal. The chemical composition,

diameter and length can be well controlled. In fact, they are one of the best controlled

class of nanoscale building blocks. Semiconductor NWs have been assembled as nanoscale

FETs [136,137], p-n diodes [136,138], light emitting diodes [136], bipolar junction tran-

sistors [138], complementary inverters [138], complex logic gates, or other basic computa-

tion circuits [139]. However, the synthesis of NWs and the integration with other current

elements remains a challenge for nanoelectronics. The author has fabricated and done pre-

liminary measurements on InAs NWs. The InAs NWs were synthesized in Prof. Lauhon’s

group [140]. Figure 5.1(d) shows an InAs device fabricated by the author.

In conclusion, the discovery of CNTs marked a milestone in nanoscience and technol-

ogy. CNTs are important and interesting both due to their great potential for nanoscale

applications and because they offered a testing stage to study fundamental physics in low

dimensions. Other nanomaterials such as NWs also have begun to show their potential and

have become a hot research area in recent years. With so many novel materials and rich
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physics, this field has attracted a lot of scientific interests. We believe this fast developing

trend will continue for the next a few years or even next decade.
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APPENDIX A

Measurement of Single-Walled Carbon Nanotubes

In this chapter, our fabrication and measurment techniques and preliminary results of

SWCNT devices will be shown here.

We have had access to a limited number of SWCNT samples from Duke University1. The

synthesis method can be found in Ref. [141]. The samples were long SWCNTs on highly

doped (p++) Si substrate with 1 µm thick oxide layer, as schematically shown in Fig. A.1(a).

Because the SWCNTs are randomly distributed on the substrate, maximum flexibility is

needed for patterning. Therefore e-beam lithography is used in all the lithography steps.

Coarse and fine alignment marks are patterned by e-beam lithography as in Fig. A.1(b).

The fine alignment marks are numbered. The diameter of SWCNTs is only one or a few

nanometers, which is beyond the resolution of most SEM. But due to charging effects, at

low acceleration voltages, it is possible to image SWCNTs on an insulating substrate [142].

By SEM inspection, we can locate the SWCNTs and map out their coordinates as in Fig.

A.1(c). The connecting electrodes and wirebonding pads are then patterned according to the

alignment marks defined in the previous step. The completed device is shown schematically

in Fig. A.1(d) with a real device shown in Fig. A.2.

The SWCNT devices we fabricated have a resistance on the order of MΩ as they are

exceptionally long. For these high resistance samples, it is difficult or impossible to use the

1Obtained from research group of Prof. Jie Liu. Dr. Shaoming Huang synthesized the SWCNTs.
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Figure A.1. (Color) Process flow of SWCNT device fabrication. (a) The wafter
received with aligned SWCNTs, (b) Coarse and fine alignment marks are pat-
terned, (c) The coordinates of the SWCNTs are obtained by SEM imaging
with regard to the alignment marks, (d) E-beam lithography patterning of the
connecting electrodes and wire bonding pads.
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Figure A.2. SEM images of a SWCNT device. (a) Image taken with 3 kV
acceleration voltage with in-lens detector. (b) Image taken with 3 kV acceler-
ation voltage with secondary electron detector. The SWCNT is clearly visible
only in (a) due to charging effect.
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circuits shown in Fig. 3.11. This is because these circuits are current biased by a current

source and for high resistance samples, the current source can easily be overloaded as the

current I times the sample resistance RS exceeds 12 V, which is the maximum voltage output

of the current source. A voltage bias circuit as shown in Fig. A.3 is used. Although this

method is less sensitive than the measurement technique discussed in Chapter 3 and cannot

be implemented for four terminal measurement, it is preferable for SWCNT devices as it can

measure high resistance samples. In Fig. A.3, the voltage divider is 1022:22≈46.5:1, but any

number can be used depending on the voltage range needed. The SWCNT device shown in

Fig. A.2 was measured using this technique.

As we only have limited number of SWCNT devices, a systematic study like the MWNT

devices presented in this thesis is not possible. Here we will only show our measurement of

differential conductance G for a single SWCNT sample as a function of Vdc at Vg from 10

V to -10 V as in Fig. A.4. We can see that at 4 K, if the gate voltage Vg < −4 V, there

is no conduction, while when the gate voltage increases, the conductance increases. This is

similar to an n-type semiconductor. At positive voltages, structure appears. Although this

looks very similar to the data on tunneling DOS measured by STM [70,71], further analysis

found that the voltage scale we observed is too small for SWCNT DOS2. If the structure

was the DOS of SWCNT, the voltage scale should be on the order of volts. However, as can

be seen in our data, the voltage scale is only about 25 mV. We still do not understand this

behavior and further study is certainly needed.

2The SWCNTs we obtained are most likely having a diameter of 3∼4 nm.
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Figure A.3. Circuit diagram of differential conductance measurement by
Ithaco 1211. The sample resistance RS is on the order of MΩ. Port A is
connected to the lock in amplifier input.

Figure A.4. (Color) Differential conductance vs bias voltage of a SWCNT
device at gate voltages from 10 V to -10 V. Data are shifted for clarity.


