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ABSTRACT

Thermal Transport Near The Normal-Metal/Superconductor Interface In

Mesoscopic Devices

Zhigang Jiang

Thermal transport properties, i.e., thermal conductance and thermopower, have been

studied experimentally in mesoscopic proximity-coupled normal-metal devices. These

devices essentially consist of a normal metal in proximity to a superconductor, with

dimensions comparable to the characteristic lengths related to the physics of interest.

These samples were patterned by multi-layer electron-beam lithography, and mea-

sured at low temperatures using an Oxford Kelvinox 300 dilution refrigerator and a

Janis 3He refrigerator.

It is well-known that, in the elastic-scattering dominated regime, the ratio

of the thermal to the electric conductance of a normal metal is proportional to the

temperature, the so-called Wiedemann-Franz law. However, it has been found in our

experiments that the thermal conductance of the proximity-coupled normal metal is

strongly suppressed at low temperatures, deviating from its normal state value (the

value predicted by Wiedemann-Franz law). In another words, the Wiedemann-Franz

law breaks down in the proximity regime. In contrast to the strong suppression in
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the thermal conductance, the magnitude of the thermopower of such devices is much

larger than an equivalent normal-metal system. Both the thermal conductance and

the thermopower oscillate as a function of magnetic flux with a fundamental period

corresponding to one flux quantum Φ0 = h/2e. While the thermal conductance shows

oscillations symmetric with the magnetic field, the symmetry of the thermopower

oscillations can be either symmetric or anti-symmetric.

In addition to the experimental studies, numerical simulations have been per-

formed on the sample geometries using the quasiclassical theory of superconductivity.

Qualitative agreement with the experimental results is obtained.

Beside thermal transport near the normal-metal/superconductor interface, spin

transport through a ferromagnet/superconductor interface also has been studied. The

differential resistance of the interfaces shows asymmetric structure as a function of

the voltage bias across it, which can be understood as a consequence of spin-polarized

electron transport from the ferromagnet to the superconductor. Close to the interface,

the superconducting proximity effect in the ferromagnet and the charge-imbalance

effect in the superconductor have been investigated as well.
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CHAPTER 1

Introduction

1.1. Thermal transport in normal-metal/superconductor

heterostructures

In the past two decades, the electrical characteristics of mesoscopic normal-

metal/superconductor (NS) heterostructures have been studied extensively (see for

example: [1, 2]). In a proximity-coupled normal metal, two effects, namely the super-

conducting proximity effect and the quantum interference effect, have attracted much

interest [3, 4, 5, 6, 7]. The superconducting proximity effect reflects the modification

of the interactions between electrons inside the normal metal due to the proximity

of the superconductor [8, 9]. Generally speaking, there are two mechanisms in this

regime: (1) the superconductor introduces pair correlations into the normal-metal

electrons, which reduce the resistance of the normal metal at a temperature below

the transition temperature Tc of the superconductor; (2) at very low temperatures,

the reduction of the density of states (DOS) of electrons in the normal metal increases

the resistance and results in the so-called re-entrant behavior. The quantum interfer-

ence effect, on the other hand, describes the phase coherence nature of electrons in

such devices, and stems from the process of Andreev reflection [10]: at temperatures

well below the gap of the superconductor, kBT << ∆, an electron in the normal

metal cannot be transmitted through the NS interface, but is reflected as a coherent

hole with the simultaneous generation of a Cooper pair in the superconductor.
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2

In spite of the abundance of interesting physics discovered in the electrical

transport measurements, the investigation of the thermal properties of such devices

is still in its infancy, especially experimental studies. This fact is due to technical

and physical reasons. Technically speaking, thermal transport measurements are one

order of magnitude more difficult than electrical transport measurements. For in-

stance, to know the temperature distribution in mesoscopic samples, submicron or

even nanometer scale thermometers are required to measure the local electron temper-

ature. In contrast to the technical difficulties, which may be overcome by improving

fabrication techniques and developing new measurement methods, the physical rea-

sons are more fundamental, because the main argument here is that whether or not

one can calculate thermal characteristic parameters based on the electrical transport

measurements. In another words, is it necessary to do thermal transport measure-

ments? The typical example is that the thermal conductance can be calculated by

Wiedemann-Franz law [11], knowing the conductance and the temperature of the

sample. We will show in this thesis that, in a proximity-coupled normal metal, the

Wiedemann-Franz law breaks down. The thermopower may also oscillate with a

different symmetry as a function of magnetic field compared with the conductance

oscillations. Hence, it is necessary to employ thermal transport measurements, which

may bring additional information about the interactions between electrons in the

proximity-coupled normal metal and probably show new physics.

The main goal of this thesis is to study the superconducting proximity effect

and the quantum interference effect in the thermal properties (the thermal conduc-

tance and the thermopower) of proximity-coupled normal-metal devices. In fact, the
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device studied is the so-called Andreev interferometer, which is a hybrid loop with

one normal-metal arm and one superconducting arm.

1.1.1. Thermal conductance of Andreev interferometers

Thermal conductance is defined by the ratio of the thermal current through the

sample to the temperature differential across the sample under the condition that

there is no electrical current flowing in the sample [12]. It is analogous to the electric

conductance, with thermal energy being carried rather than electric charge. Many

normal metals, such as Cu, Ag and Au, are good thermal conductors. However,

for a pure superconductor, the thermal conductance is suppressed dramatically at

a temperature well below Tc, which makes a superconductor a very poor thermal

conductor at low temperatures. The question investigated in this thesis is: what is

the situation for a normal metal coupled to a superconductor?

Historically, thermal conductance of an Andreev interferometer was first mea-

sured by Dikin et al. in our group [13]. A clear suppression in the thermal conduc-

tance at a temperature below Tc was observed. However, as pointed out by us in

Ref. [13] and a later theoretical study by Bezuglyi et al. [14], the sample measured

there was actually not in the true proximity regime, the reduced thermal conduc-

tance may have been due to the well-known suppression of thermal conductance in a

conventional superconductor, rather than a proximity effect phenomenon.

In this thesis, the thermal conductance of Andreev interferometers has been

measured quantitatively in the true proximity regime at different temperatures and

in different magnetic fields, with many technical improvements compared with the

previous measurement. Furthermore, as we will show, for the first time, thermal
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conductance oscillations (as a function of magnetic field) have been observed [15].

The period of the oscillations corresponds to one flux quantum Φ0 = h/2e through

the loop of Andreev interferometer.

In addition, the thermal conductance of Andreev interferometers has also been

investigated theoretically and numerically [16] by using the quasiclassical theory of

superconductivity. In contrast to Bezuglyi’s work, our simulations particularly fo-

cus on the proximity regime and predict the thermal conductance of the two types

of Andreev interferometers relevant to the experiments. The numerical results are

qualitatively in agreement with our experimental data.

1.1.2. Thermopower of Andreev interferometers

Thermopower is defined as the ratio of the induced thermal voltage differential across

the sample to the applied temperature differential, also under the condition that there

is no electrical current flowing in the sample [12]. In the framework of Fermi liquid

theory, the thermopower stems from breaking of electron-hole symmetry, and arises

from the second term in the Sommerfeld expansion of the Fermi distribution function.

For a typical metal, it is usually very small.

Historically, the thermopower of Andreev interferometers was measured first

by Eom et al. [17], a former student in our group. It was found that the thermopower

oscillates as a function of magnetic field with a period of Φ0 = h/2e. The oscilla-

tions can be either symmetric or anti-symmetric with respect to the magnetic field,

depending on the geometry of the sample. Moreover, the temperature dependence of

the magnitude of the oscillations is non-monotonic. As the temperature drops down
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from Tc, it first increases and then decreases after reaching a maximum at some inter-

mediate temperature. Phase coherent thermopower oscillations were confirmed later

by Dikin et al. [13, 18] from our group and Parsons et al. [19] from Petrashov’s

group.

Spurred by the above experiments, thermopower of Andreev interferometers

has attracted much interest from theorists [20, 21, 22]. Unfortunately, these theoret-

ical models cannot explain all the experimental data. Six years after phase coherent

thermopower oscillations were first reported, the exact reason for the symmetry of

the oscillations still remains as a puzzle. However, there is a common theme in these

theoretical works, which is that the supercurrent plays an important role in the ther-

moelectrical transport.

In this thesis, the symmetry of the thermopower oscillations has been further

investigated on a device where we have control of the magnitude and direction of the

supercurrent. The preliminary results indeed show that, depending on the direction

of the supercurrent, the oscillations can be either symmetric or anti-symmetric in the

same device [23].

1.2. Spin transport in ferromagnet/superconductor heterostructures

There has been continuing interest in the past few years in mesoscopic ferro-

magnet/superconductor (FS) heterostructures, due to the rich physics involved and

its potential applications in industry. However, compared with NS systems, this field

is much less mature and many topics remain unexplored. In this thesis, two topics

have been examined: (1) differential resistance of mesoscopic FS junctions and (2)

superconducting proximity effect in ferromagnets.
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Extending the pioneering work of Tedrow and Meservey [24], point-contact FS

spectroscopy has been studied recently by several groups [25, 26]. It has been found

that the spin-polarization P in the ferromagnet can be determined by measuring

the differential resistance of the FS junction as a function of the voltage bias across

it [27, 28, 29, 30, 31] and fitting the results to the spin-polarized version of the

Blonder, Tinkham, Klapwijk (BTK) theory [32]. In Chapter 5, we will present our

measurements of differential resistance of mesoscopic FS junctions. We find that

the differential resistance is asymmetric even at zero external field. The dips in the

differential resistance split at higher magnetic field. This splitting can be understood

as arising from a combination of the spin-polarized tunneling through the FS interface

and the splitting of the quasi-particle density of states due to the magnetic field [33].

There has also been much debate about the length scale in which superconduct-

ing proximity effect can be observed in a ferromagnet. In the conventional picture,

this length scale should be quite short, because the presence of the large exchange

field in ferromagnets would destroy the pair correlations induced by the proximity

of the superconductor [34]. However, long-range proximity effects in a ferromagnetic

have been reported in a number of recent publications [35, 36, 37, 38, 39, 40].

Additionally, recent theoretical work also shows that a long-range proximity effect

may arise from the triplet component of the superconducting correlations, which are

predicted to extend into a ferromagnet to a much longer distance [41, 42]. In this

thesis, we will report our own measurements of the proximity effect in Ni/Al devices

with high transparent interfaces. We found that the total resistance change in the

ferromagnet is about 0.07 % of its normal state resistance, much less than 12 %

measured by Giroud et al. [40].
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1.3. Overview of this thesis

This thesis is comprised of two parts. Part one is the major part, which de-

scribes the thermal transport properties of proximity-coupled normal-metal devices.

It includes Chapter 2-4: Chapter 2, a brief introduction of the quasiclassical the-

ory of superconductivity, followed by detailed numerical calculations of the thermal

conductance of Andreev interferometers. Chapter 3, technical details of the sample

fabrication process and low temperature measurements on mesoscopic devices. Chap-

ter 4, experimental data on the thermal conductance and thermopower measurements,

and the comparisons with the results of numerical simulations. Part two (Chapter

5) investigates a separate topic, spin transport through ferromagnet/superconductor

interface devices. It is a self-contained chapter, which includes theory overview and

experimental results. At the end, this thesis is concluded in Chapter 6 with a sum-

mary on both the thermal transport and the spin transport measurements, as well a

discussion about the possible directions for the future work.



CHAPTER 2

Theory: Quasiclassical theory of superconductivity

Although a variety of theories have been developed to describe the NS systems,

the quassiclassical theory of superconductivity has proved to be a powerful tool to

understand both the equilibrium and non-equilibrium properties of such systems. It

has essentially become the common language in recent publications related to the

thermal properties of NS devices [14, 21, 22, 43]. In this chapter, we will first

present a detailed derivation of the Usadel equation and the related kinetic equations

in the language of the quasiclassical Green’s function and the Keldysh technique.

Then, we will solve them numerically to calculate the thermal conductance of Andreev

interferometers with the geometries relevant to the sample geometries measured in

experiments. Several approximations have been made in this chapter to simplify the

problem, based on the fact that we are only interested in the transport properties of

quasi-one-dimensional diffusive systems. More details and general discussions can be

found in Ref. [44, 45, 46, 47, 48].

2.1. Usadel equation

2.1.1. Quasiclassical Green’s function

The starting point of this chapter is the time-ordered Green’s function, which can be

expressed, in Nambu space (the particle and hole space), as the following

Ĝ(r1, r2; t1, t2) = −i
〈

TΨ̂(r1, t1)Ψ̂
†(r2, t2)

〉

. (2.1)

8
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Using the center-of-mass coordinates in space and time and taking the Fourier trans-

formation, we obtain

Ĝ(r1, r2; t1, t2) ⇒ Ĝ(R, r; T, t) ⇒ Ĝ(R,p; T, E), (2.2)

where R = (r1 + r2)/2, r = r1 − r2, T = (t1 + t2)/2, and t = t1 − t2.

The time-ordered Green’s function oscillates as a function of r = |r1 − r2|

on a scale of the Fermi wavelength λF , which is typically several angstroms, much

smaller than the characteristic length scale of the physics of interest. Hence, it is a

proper approximation to integrate out the dependence on r, in order to reduce the

number of variables. This is the so-called quasiclassical approximation. In addition,

the electrons involved in the transport are primarily on the Fermi surface. Therefore,

we can rewrite the above Green’s function as Ĝ(R, ξ, v̂F ; T, E), where ξ and v̂F are

related to the magnitude of the momentum and the direction of velocity at the Fermi

surface respectively. The quasiclassical Green’s function is then defined as

ĝ(R, v̂F ; T, E) ≡ i

π

∫

dξ Ĝ(R, ξ, v̂F ; T, E). (2.3)

In our mesoscopic devices, the typical sample dimensions are shorter than the

inelastic impurity-scattering length of electrons. So, we can neglect the inelastic

scattering, and only consider the elastic scattering. In the Born approximation, the

self-energy of the elastic impurity-scattering reads

Σ̂(R, p̂, T, E)imp = nimp

〈
∫

d3p′

(2π)3

∣

∣v(p̂ · p̂′)
∣

∣

2
Ĝ(R,p′; T, E)

〉

pF

, (2.4)
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where nimp is the impurity concentration and 〈. . .〉pF

denotes the averaging over the

Fermi surface. Since
∣

∣v(p̂ · p̂′)
∣

∣

2
normally varies slowly as a function of the magnitude

of the momentum p′ = |p′| near the Fermi surface, one can introduce an elastic

scattering time τ ,

τ−1 = 2πnimpN0

∫

dΩp ′

∣

∣v(p̂ · p̂′)
∣

∣

2
, (2.5)

where N0 = mkF/2π2 is the DOS per spin and on the Fermi surface p = p′ = kF .

Consequently,

Σ̂(R, p̂, T, E)imp =
1

2πτ

〈
∫

dξ Ĝ(R,p′; T, E)

〉

pF

, (2.6)

where we use the substitution

∫

d3p′

(2π)3
7−→ N0

∫

dξ

∫

dΩp ′ . (2.7)

Note that ξ = p′2/2m − µ, where m is the effective mass and µ is the chemical

potential.

In the rest of this chapter, because we are not going to solve time-dependent

problems, we will drop the time variable T for simplicity.

2.1.2. Eilenberger equation

The equation of motion for the quasiclassical Green’s function is the so-called Eilen-

berger equation,

[

ĝ−1
0 − σ̂, ĝ

]

= 0, (2.8)

where σ̂ is the self-energy. In general, ĝ0 can be written as

ĝ−1
0 = Eτ̂3 + ivF ∂̂R − eφ + µ, (2.9)
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where τ̂3 is the third Pauli spin matrix1 and ∂̂R = ∇R− ieA(R) is the gauge-invariant

spatial derivative. The last two terms on the right side of Eqn. (2.9), i.e., the electric

potential and the chemical potential, commute with ĝ, so we can simply drop them

after we insert Eqn. (2.9) into Eqn. (2.8). In addition, the self-energy term σ̂ in Eqn.

(2.8) consists of two contributions. One is the electron-phonon scattering self-energy

(pair potential), −∆̂, which is responsible for superconductivity. Another one is the

elastic impurity-scattering self-energy Σ̂imp. Hence, we can rewrite the Eilenberger

equation as the following

−
[

vF ∂̂, ĝ
]

=

[

−iEτ̂3 − i∆̂ +
1

2τ
〈ĝ〉vF

, ĝ

]

, (2.10)

where ∆̂ is given by

∆̂ =







0 ∆

−∆∗ 0






. (2.11)

It also should be noted that the quasiclassical Green’s function are normalized,

i.e., ĝĝ = 1̂. If we define the matrix elements of ĝ as

ĝ =







g f

f† −g






, (2.12)

then we obtain g2 + ff† = 1.

2.1.3. Keldysh technique

The Keldysh Green’s function technique is a very useful technique to study both the

equilibrium and non-equilibrium phenomena. In this method, a Green’s function is

1In this thesis, τ̂i (i = 0 . . . 3) represents the ith Pauli spin matrix.
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normally written in a matrix form,

Ǧ =







ĜR ĜK

0 ĜA






, (2.13)

where ĜR, ĜA and ĜK are retarded, advanced and Keldysh Green’s functions respec-

tively. The diagonal terms, the retarded and advanced Green’s functions, represent

the spectral, i.e., equilibrium properties of the system; while the off-diagonal term,

the Keldysh Green’s function, is related to the non-equilibrium distribution function.

The purpose of developing these Green’s functions is to calculate physical quan-

tities and understand the physics behind them. The so-called Kadanoff functions have

been introduced to do so [49],

Ĝ>(1, 2) = i 〈Ψ†(2)Ψ(1)〉 , Ĝ<(1, 2) = −i 〈Ψ(1)Ψ†(2)〉 . (2.14)

In the Keldysh space, the retarded, advanced and Keldysh Green’s functions can be

expressed as linear combinations of the Kadanoff functions,

ĜR(1, 2) = θ(t1 − t2)
[

Ĝ<(1, 2) − Ĝ>(1, 2)
]

,

ĜA(1, 2) = −θ(t2 − t1)
[

Ĝ<(1, 2) − Ĝ>(1, 2)
]

,

ĜK(1, 2) = Ĝ<(1, 2) + Ĝ>(1, 2). (2.15)

Since the physical quantities can be written in terms of Ĝ> and Ĝ<, it is trivial to

transfer them to ĜR, ĜA and ĜK.

Within the quasiclassical approximation, again we use ǧ (or ĝ) instead of Ǧ

(or Ĝ), based on the transmission of Eqn. (2.3). ǧ satisfies the Eilenberger equation
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(2.8) and the normalization condition ǧǧ = 1̌. Hence, the expectation values of the

physical quantities can be expressed by the matrix components of ǧ: ĝR, ĝA and ĝK.

For example, the local DOS of electrons, the electrical current, the thermal current,

and the superconducting gap are [46, 47, 48]

N(R, E) = N0<
[
∫

dΩpĝ
R(R, v̂F , E)

]

, (2.16a)

j (R) = −eN0

4

∫

dE

∫

dΩpTr
[

vF τ̂3ĝ
K(R, v̂F , E)

]

, (2.16b)

j T (R) = −N0

4

∫

dE

∫

dΩp ETr
[

vF ĝK(R, v̂F , E)
]

, (2.16c)

∆(R) = N0
λ

4

∫

dE

∫

dΩpĝ
K(R, v̂F , E)12. (2.16d)

2.1.4. Dirty limit

In metallic mesoscopic samples, the concentration of impurities is normally very high,

so that the mean free path of electrons le is much shorter than the sample dimensions.

In another words, the electron motion is diffusive, i.e., the electrons feel strong elastic

impurity scattering during the transport. This is the so-called dirty limit. In this

limit, the Green’s functions are nearly isotropic, therefore we can expand them in

spherical harmonics

ǧ(R, v̂F , E) = ǧs(R, E) + v̂F ǧp(R, E) + (higher order terms), (2.17)

where ǧs(R, E) is the isotropic term (s-wave expansion) obtained from the angular

average of the quasiclassical Green’s function, and v̂F ǧp is the first order expansion

(p-wave expansion). As a consequence of dirty limit, v̂F ǧp << ǧs and all the higher

order terms in the expansion are negligible.
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Following the same procedure, one can expand the self-energy as

σ̌ = σ̌s + σ̌′
s + v̂F σ̌p. (2.18)

The first two terms are s-wave expansion terms

σ̌s
∼= − i

2τ
ǧs,

σ̌′
s = −∆̌, (2.19)

where ∼= means we only consider the contribution from the zero order expansion, and

∆̌ =







∆̂ 0

0 ∆̂






. (2.20)

The p-wave term is 2

v̂F σ̌p
∼= −iπnimpN0

(∫

dΩp ′

∣

∣v(p̂ · p̂′)
∣

∣

2
p̂′

)

ǧp,

σ̌p
∼= − i

2
(
1

τ
− 1

τtr
)ǧp, (2.21)

where τtr is called transport time and defined by

τ−1
tr = 2πnimpN0

∫

dΩp ′

∣

∣v(p̂ · p̂′)
∣

∣

2
(1 − p̂ · p̂′). (2.22)

Furthermore, ǧ−1
0 can also be expressed as follows

ǧ−1
0 = ǧ−1

0,s + v̂F ǧ−1
0,p

= Eτ̌3 + v̂F · (ivF ∂̂), (2.23)

2At the Fermi surface, v̂F and p̂ are identical. They denote the direction of velocity or momentum.
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where

τ̌3 =







τ̂3 0

0 τ̂3






. (2.24)

It should be pointed out that the Keldysh technique is not restricted to the

dirty limit. It is a very general method, which can be applied in the ballistic regime

as well without many modifications. In addition, for the diffusive regime, one can also

include the inelastic scattering and the spin of electrons into the above discussions.

2.1.5. Usadel equation and parameterization

Using the s-wave and p-wave expansions derived in the above section, the Eilenberger

equation (2.8) reduces to its dirty limit version, the Usadel equation. As we will

see later, after parameterization, the Usadel equation further reduces to a relatively

simple form. Although this equation has analytical solutions in some simple problems,

it needs to be solved numerically in most cases.

Inserting Eqn. (2.17), (2.18) and (2.23) into the Eilenberger equation (2.8)

and separating the even terms and the odd terms with respect to v̂F , one obtains

Even terms:

[

Eτ̌3 + ∆̌, ǧs

]

+ i
vF

3

[

∂̂, ǧp

]

= 0; (2.25)

odd terms:
[

ivF ∂̂ − i

2τtr
ǧp, ǧs

]

+
[

Eτ̌3 + ∆̌, ǧp

]

= 0, (2.26)

where the last term can be neglected, because in the dirty limit, 1/τtr >> ∆, E.

In addition, we can use the normalization condition ǧǧ = 1̌, i.e.,

ǧsǧs = 1̌, {ǧs, ǧp} = 0, (2.27)
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to further simplify the above Eqn. (2.25) and (2.26). Insert Eqn. (2.27) into Eqn.

(2.26), one gets

ǧp = −τtrvF ǧs

[

∂̂, ǧs

]

. (2.28)

Finally, inserting Eqn. (2.28) into Eqn. (2.25), we obtain the Usadel equation

[

Eτ̌3 + ∆̌, ǧs

]

− iD∂̂(ǧs∂̂ǧs) = 0, (2.29)

where D = v2
F τtr/3 is the electric diffusion coefficient.

Next, introduce a way to parameterize the retarded quasiclassical Green’s func-

tion which makes use of all available symmetries,

ĝR
s = isinhθsinφ(τ̂1) + isinhθcosφ(τ̂2) + coshθ(τ̂3)

=







coshθ sinhθeiφ

−sinhθe−iφ −coshθ






, (2.30)

where θ and φ are both complex variables and φ is related to the phase of the super-

conducting order parameter. Since ĝA
s = −τ̂3(ĝ

R
s )†τ̂3, it reads

ĝA
s =







−coshθ∗ −sinhθ∗eiφ∗

sinhθ∗e−iφ∗

coshθ∗






. (2.31)

Then, one can get

∂̂(ĝR
s ∂̂ĝR

s ) =







X11 X12

X21 X22






, (2.32)
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where

X11 = isinh(2θ)∂θ∂φ + isinh2θ(∂2φ)

X12 =

[

∂2θ + 2icosh2θ∂θ∂φ +
i

2
sinh(2θ)(∂2φ) − 1

2
sinh(2θ)(∂φ)2

]

eiφ

X21 = X12(φ ⇒ −φ)

X22 = −X11. (2.33)

Inserting the above equations into the matrix equation (2.29) and only considering

the first diagonal equation, one can obtain the parameterized Usadel equation im-

mediately. Since we are primarily interest in the proximity-coupled normal-metal

systems, we will set the superconducting gap in the normal metal to zero ∆ = 0 in

the following derivation. A general formula will be shown at the end of this section.

After all the efforts above, the Usadel equation Eqn. (2.29) turns into

iD







X11 X12

X21 X22






= 2E







0 sinhθeiφ

sinhθe−iφ 0






. (2.34)

For a one-dimensional sample, the above matrix equation can be expressed by two

equivalent equations,

∂x(sinh2θ∂xφ) = 0, (2.35a)

D∂2
xθ + 2iEsinhθ − D

2
sinh(2θ)(∂xφ)2 = 0, (2.35b)

where the first equation is related to the continuity equation of the spectral cur-

rent ∂xjε = 0, since by the definition the energy-dependent spectral current is jε ≡
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sinh2θ∂xφ. Notice that the above equations can be easily modified to three-dimensional

systems.

In a more general problem, the Usadel equation reads

D∂x(sinh2θ∂xφ) − 2i=(∆)sinhθ = 0, (2.36a)

D∂2
xθ + 2iEsinhθ − D

2
sinh(2θ)(∂xφ)2 − 2i<(∆)coshθ = 0. (2.36b)

It needs to be pointed out that, if the gap ∆ has an imaginary component, according

to Eqn. (2.36a), the spectral current jε would not be conserved any more. Then, a

conversion between the supercurrent and the quasiparticle current would expect to

be seen. As we will see later, this conversion provides the zero order contribution to

the thermal voltage of Andreev interferometers [22].

2.1.6. Kinetic equations and parameterization

Although the Usadel equation has offered us spectral information of the system, which

potentially can tell us the DOS of electrons, we need more information (especially the

distribution function) to complete our understanding of the system and calculate the

physical quantities of interest. The distribution function can be obtained from the

so-called kinetic equations. In contrast to the Usadel equation, the kinetic equations

are related to the Keldysh Green’s function ĝK, hence the off-diagonal term in Eqn.

(2.29).

The normalization condition ǧǧ = 1̌ suggests the Keldysh Green’s function

satisfies the following condition:

ĝK = ĝRĥ − ĥĝA, (2.37)
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where ĥ is called distribution matrix. The kinetic equation of motion for ĥ can be

derived from the off-diagonal term of Eqn. (2.29) as

∂
[

∂ĥ + ĝR(∂ĝR)ĥ − ĥĝA(∂ĝA) − ĝR(∂ĥ)ĝA
]

= 0. (2.38)

Again, we set ∆ = 0 in normal metal.

Furthermore, based on the symmetry requirement, we can choose ĥ to be

diagonal [50, 51]

ĥ = hLτ̂0 + hT τ̂3, (2.39)

where hL(T ) is the longitudinal (transverse) component of the distribution function.

Consequently, we can rewrite the kinetic equation as

∂
[

(ĝR∂ĝR − ĝA∂ĝA)hL + (1 − ĝRĝA)∂hL

]

τ̂0

+∂
[

(ĝR∂ĝR − τ̂3ĝ
A∂ĝAτ̂3)hT + (1 − ĝRτ̂3ĝ

Aτ̂3)∂hT

]

τ̂3 = 0. (2.40)

Now, do the following actions onto the above equation:

(1) Tr [(left side) · τ̂3]:

∂
{

Tr
[

(ĝR∂ĝR − ĝA∂ĝA)τ̂3

]

hL − Tr
[

ĝRĝAτ̂3

]

∂hL

}

+∂
{

Tr
[

1 − ĝRτ̂3ĝ
Aτ̂3

]

∂hT

}

= 0, (2.41)

where

Tr
[

ĝR(A)∂ĝR(A)
]

=
1

2
Tr
[

ĝR(A)∂ĝR(A)
]

+
1

2
Tr
[

∂ĝR(A) · ĝR(A)
]

=
1

4
Tr
[

∂(ĝR(A))2
]

= 0. (2.42)
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(2) Tr [(left side) · τ̂0]:

∂
{

Tr
[

(1 − ĝRĝA)
]

∂hL − Tr
[

ĝRτ̂3ĝ
A
]

∂hT

}

+∂
{

Tr
[

(ĝR∂ĝR − ĝA∂ĝA)τ̂3

]

hT

}

= 0. (2.43)

Then, after define the following notations,

Q =
1

4
Tr
[

(ĝR∂ĝR − ĝA∂ĝA)τ̂3

]

, (2.44)

Mij =
1

4
Tr
[

δij − ĝRτ̂iĝ
Aτ̂j

]

, (2.45)

Eqn. (2.41) and (2.43) turn to a beautiful format

∂ {Q · hL + M03 · ∂hL + M33 · ∂hT } = 0, (2.46a)

∂ {Q · hT + M30 · ∂hT + M00 · ∂hL} = 0. (2.46b)

We will see later that these two equations are actually the continuity equations for the

electrical current and thermal current, which represent the conservation of particle

number and energy respectively.

In addition, the second terms in Eqn. (2.46) describe the contributions from

broken particle-hole symmetry. In much of the literature, this contribution is dropped

out while calculating the electrical properties by assuming equal number of electrons

and holes in the studied systems. However, if we consider the thermal properties of

those systems, such as the thermopower, it has been shown recently that these two

terms give rise to a detectable contribution [22]. Furthermore, the first and third
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terms in Eqn. (2.46) represent the contributions due to the occupation of current-

carrying states and ordinary diffusion, which are related to the supercurrent and

normal current respectively. In terms of θ and φ, Q has a clear physical meaning,

Q =
1

2

[

isinh2θ∂φ − isinh2θ∗∂φ∗
]

= −=
[

sinh2θ∂φ
]

, (2.47)

i.e., Q = −= [jε], related to the imaginary part of the spectral supercurrent. Accord-

ing to the Usadel equation (2.35a), ∂Q = 0 in normal metals. In addition to Eqn.

(2.47), we can also express Mij in terms of θ and φ

M00 =
1

2
[1 + coshθcoshθ∗ − sinhθsinhθ∗cosh(2=(φ))] , (2.48a)

M33 =
1

2
[1 + coshθcoshθ∗ + sinhθsinhθ∗cosh(2=(φ))] , (2.48b)

M03 =
1

2
sinhθsinhθ∗sinh(2=(φ))), (2.48c)

M30 = −1

2
sinhθsinhθ∗sinh(2=(φ)). (2.48d)

If we consider the superconducting gap ∆ while deriving the Eqn. (2.46), we

can rewrite the above kinetic equations into a more general form

∂ {QhL + M03∂hL + M33∂hT } =

i

4D

[

hLTr
{

τ 3[ĝR
s − ĝA

s , ∆̂]
}

− 2hT Tr
{

∆̂(ĝR
s + ĝA

s )
}

]

, (2.49a)

∂ {QhT + M30∂hT + M00∂hL} = 0. (2.49b)

Note that the kinetic equations, Eqn. (2.46) or (2.49), can be easily parame-

terized by using Eqn. (2.30) and (2.31). We will come back to it later while solving

specific problems in the second half of this chapter.
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2.1.7. Boundary conditions

2.1.7.1. Boundary conditions for the Usadel equation

The sample of interest in our experiments (for example: a one-dimensional normal-

metal wire) is normally connected to a metal pad of large area that acts as a reser-

voir to cool down electrons. In the following simulations, we will use ideal reservoir

boundary conditions, in which we assume the electrons in the reservoirs are in an

equilibrium state and have a well-defined uniform temperature T and electric poten-

tial V . In terms of θ and φ, the ideal reservoir boundary conditions can be expressed

as

ĝR =
1

[(E + iδ)2 − ∆2]1/2







E ∆eiφ

−∆e−iφ −E






, (2.50)

where E is the quasiparticle energy and δ is an infinitesimally positive number, called

the pair breaking term. In some papers, δ → 0+, and the above boundary conditions

of θ reduce to a simple form

coshθ =
E√

E2 − ∆2
, (2.51)

i.e.,

θ =











−π
2
i + 1

2
ln∆+E

∆−E
if E < ∆

1
2
lnE+∆

E−∆
if E > ∆

. (2.52)

In a normal reservoir, ∆ = 0, so that ĝR = τ̂3, θ = 0.

The value of φ in a superconducting reservoir is the macroscopic phase of the

superconductor. In a normal reservoir, however, it does not have a physical meaning.

It obeys ∂φ = 0 to ensure that supercurrent does not exist in such reservoirs.
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In reality, the interface between a normal-metal wire and a superconducting

reservoir cannot be perfect. The effect of the barrier resistance of NS interface was

first studied by Zaitsev [52], then simplified by Kupriyanov and Lukichev [53] for the

diffusive case in the limit of low transparency. The boundary conditions of Kupriyanov

and Lukichev read

vF1D1ĝs1(∂xĝs1) = vF2D2ĝs2(∂xĝs2), (2.53a)

ĝs1∂xĝs1 =
1

2r
[ĝs1, ĝs2], (2.53b)

where ∂x denotes the direction from 1 to 2, and r = Rb/RN is the ratio of the

barrier resistance Rb to the normal-metal wire resistance per unit length RN , which

is inversely proportional to the transmission of the interface.

A further study of the boundary conditions of Kupriyanov and Lukichev shows

that Eqn. (2.53a) is essentially the continuity equation of Green’s function across the

interface, while Eqn. (2.53b) is the one related to the barrier resistance. In terms of

θ and φ, Eqn. (2.53) can be expressed as

r sinh θ1(∂xφ1) = sinh θ2 sin(φ2 − φ1), (2.54a)

r [∂xθ1 + i sinh θ1 cosh θ1(∂xφ1)] = cosh θ1 sinh θ2e
i(φ2−φ1) − sinh θ1 cosh θ2. (2.54b)

In the limit of a perfect interface, i.e., r = 0, the above equations reduce to the

continuity equations for θ and φ: θ1 = θ2 and φ1 = φ2. In the absence of a super-

current, i.e., ∂xφ1(2) = 0, one can also get a relatively simple boundary condition:

r(∂xθ1) = sinh(θ2 − θ1) and φ1 = φ2.
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2.1.7.2. Boundary conditions for kinetic equations

In ideal reservoirs, no matter whether one has a normal reservoir or a superconducting

reservoir, the boundary conditions for the distribution functions hL and hT are (at

specific temperature T and voltage V )

hL(T ) =
1

2

[

tanh
E + eV

2T
± tanh

E − eV

2T

]

. (2.55)

Note that, in case of V = 0, hL = tanh E
2T

and hT = 0. Moreover, hL =

tanh E
2T

= 1−2f0, where f0 = 1/(eE/T +1) is the usual equilibrium Fermi distribution

function. In another words, hL and hT are directly related to the Fermi distribution

function, but in a different representation.

2.1.8. Physical quantities

In the dirty limit approximation, applying the parameterizaion (Eqn. (2.30) and

(2.31)) to the equations of physical quantities (Eqn. (2.16)), one can be rewritten

Eqn. (2.16) as the following

(1) DOS of electrons:

N(E) = N0cosh (<(θ)) cos (=(θ)) . (2.56)

(2) electrical current:

j =
eN0D

4

∫ ∞

−∞

dE Tr
[

τ̂3(ĝ
R∂ĝK + ĝK∂ĝA)

]

= eN0D

∫ ∞

−∞

dE (Q · hL + M03 · ∂hL + M33 · ∂hT )

= js + jt + jn, (2.57)
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where jn = eN0D
∫∞

−∞
dE (M33 ·∂hT ) corresponds to the normal current, js =

eN0D
∫∞

−∞
dE (Q · hL) the supercurrent, and jt = eN0D

∫∞

−∞
dE (M03 · ∂hL)

is the current related to broken particle-hole symmetry.

(3) thermal current:

j T = N0D

∫ ∞

−∞

dE E(Q · hT + M30 · ∂hT + M00 · ∂hL)

= j T
s + j T

t + j T
n . (2.58)

(4) superconducting gap:

∆ = N0
λ

4

∫

dE [ĝR
s ĥ − ĥĝA

s ]12,

= N0
λ

4

∫

dE
[

hL(sinhθeiφ + sinhθ∗eiφ∗

) − hT (sinhθeiφ − sinhθ∗eiφ∗

)
]

.

(2.59)

This equation is usually used for the self-consistent calculation of the super-

conducting gap. In an ideal superconducting reservoir with V = 0 and φ = 0,

the above equation can be simplified to

∆ = N0λ

∫ ∞

0

dE tanh(E/2kBT )<
(

∆√
E2 − ∆2

)

. (2.60)

2.2. Applications of quasiclassical theory to proximity-coupled systems

The quasiclassical theory of superconductivity has been used to improve our

understanding of the transport properties of the proximity-coupled normal-metal sys-

tems in many publications. For example: [54, 55, 56, 57, 58, 59]. In the following

part of this chapter, we are going to apply it to calculate the thermal conductance
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of such systems. Before we show the simulation details, let me first introduce the

general routine we used to solve this type of problems.

2.2.1. Routine for numerical simulations

In general, in order to calculate the electrical and thermal properties of mesoscopic

devices, one needs to solve the Usadel equation and the kinetic equations numerically.

The routine is the following:

(1) Guess an appropriate initial distribution of the superconducting gap in the

sample.

(2) Solve the Usadel equation (2.35) numerically for θ and φ with proper bound-

ary conditions.

(3) Use the values of θ and φ from the previous step to calculate Q and Mij, and

then solve the kinetic equations (2.46) for hL and hT with proper boundary

conditions.

(4) Calculate the superconducting gap by using Eqn. (2.59) and compare it with

the assumption used in step (1). If a self-consistent calculation is required,

use the new calculated gap and go to step (2). Repeat step (2)-(4) until the

calculated gap converges.

(5) Calculate the physical quantities of interest.

2.2.2. Proximity-coupled normal-metal wire

Consider a proximity-coupled normal-metal wire of length L with one end (x = 0)

connected to a normal reservoir and another end (x = L) to a superconducting

reservoir, as shown in Fig. 2.1. We set the normal reservoir at a higher temperature



27

0

SN

T(0) = T 0 + ∆Τ

∆V(0) =   V V(L) = 0

T(L) = T

Figure 2.1. Schematic of a proximity-coupled normal-metal wire with
one end (x = 0) connected to a normal reservoir and another end
(x = L) to a superconducting reservoir.

T (0) = T0 + ∆T and voltage V (0) = ∆V , while the superconducting reservoir is at a

lower temperature T (L) = T0 and voltage V (L) = 0.

This sample configuration is relatively simple. There is no supercurrent flowing

in the normal-metal wire, so ∂φ = 0. In addition, we can set φ = 0 in the supercon-

ducting reservoir, which results in φ(x) = 0 for x ∈ [0, L]. Solving the Usadel equation

(2.35) for θ and φ and inserting the results into Eqn. (2.56), one can obtain the DOS

of quasiparticles along the wire. Figure 2.2 shows the normalized DOS, N(x, E)/N0,

as a function of position and particle energy along the wire. It needs to be pointed

out that: (1) At x = 0, N(0, E)/N0 = 1, as one expected for a normal reservoir. (2)

At x = L, due to the presence of the superconducting gap, the DOS shows a diver-

gence at the gap energy, and reduces to zero when E → 0. However, unlike a bulk

superconductor, the DOS is not strictly equal to zero for E < ∆, but shows a finite

value. This reduction of DOS is also called a “pseudogap”, as analogous to the real

superconducting gap ∆. (3) When x ∈ (0, L), both the pseudogap and the divergence

at the gap energy are reduced as one moves away from the superconducting reservoir.
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Figure 2.2. Normalized DOS, N(x, E)/N0, in a proximity-coupled
normal-metal wire as a function of position x and particle energy E. x
is normalized to L, the length of the wire, while energy E is normalized
to Ec = D/L2, the so-called correlation energy or Thouless energy. We
use our experimental value: ∆ = 30.3Ec in this simulation.
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In addition, the above position dependence of DOS has been observed in experiments

[60].

The kinetic equations for this sample configuration can be solved analytically

because of the fact that Q = 0, M03 = 0 and M30 = 0 simplifies the problem. In

specific, the kinetic equations (2.46) can be simplified to

M33 · ∂hT = I(E) = constant,

M00 · ∂hL = I T (E) = constant. (2.61)

One can do the integration over x and rewrite the above equations as

I(E) = D3 [hT (L) − hT (0)] ,

I T (E) = D0 [hL(L) − hL(0)] , (2.62)

where

D−1
0 ≡

∫ L

0

dx

M00
=

∫ L

0

dx

cos2(=(θ))
,

D−1
3 ≡

∫ L

0

dx

M33
=

∫ L

0

dx

cosh2(<(θ))
. (2.63)

The boundary conditions, Eqn. (2.55), read

hL(0) =
1

2

[

tanh
E + e∆V

2(T0 + ∆T )
+ tanh

E − e∆V

2(T0 + ∆T )

]

,

hL(L) = tanh
E

2T0

,

hT (0) =
1

2

[

tanh
E + e∆V

2(T0 + ∆T )
− tanh

E − e∆V

2(T0 + ∆T )

]

,

hT (L) = 0. (2.64)
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For a small voltage differential ∆V and temperature differential ∆T across the normal-

metal wire, in the linear response regime, the right hand side of Eqn. (2.64) can be

expanded into Taylor’s series. Therefore, Eqn. (2.62) can be expressed in terms of

∆V and ∆T as

I(E) =
eD3

2T0cosh2 E
2T0

∆V,

I T (E) = − ED0

2T 2
0 cosh2 E

2T0

∆T. (2.65)

In conventional Boltzmann transport theory, the electrical current and the

thermal current can be formulated in a linearized form [12],

I = G∆V + η(−∆T ),

I T = ζ∆V + κ(−∆T ), (2.66)

where G is the electric conductance, which is defined as G ≡ I/∆V under the con-

dition that ∆T = 0. The thermal conductance is then defined by GT ≡ −IT /∆T =

κ − ζη/G under the condition that the total current through the sample vanishes

I = 0. Since the second term in GT is usually very small for a typical metal, GT ≈ κ.

Combining the above two sets of equations, one can get the electric conductance

G and the thermal conductance GT immediately,

G =
e2N0D

2T0

∫

dE
D3

cosh2 E
2T0

,

GT ≈ κ =
N0D

2T 2
0

∫

dE
E2D0

cosh2 E
2T0

. (2.67)
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Figure 2.3. Normalized electric conductance (solid line) and thermal
conductance (dashed line) of the proximity-coupled normal-metal wire
as a function of temperature. Again, we use our experimental value:
∆ = 30.3Ec, i.e., Tc = 17.2Ec.

Figure 2.3 shows the normalized electric conductance G/GN (solid line) and

thermal conductance GT /GT
N (dashed line) of the proximity-coupled normal-metal

wire as a function of temperature, where GN and GT
N are the normal state electric

and thermal conductance respectively. In Fig. 2.3, G/GN shows non-monotonic tem-

perature dependence at T < Tc: as the temperature drops down below Tc, G/GN

first increases and then decreases, approaching its normal state value G/GN = 1 as

T → 0. G/GN reaches its maximum at a temperature of T ≈ 9Ec/kB
3. This is the

3In general, one would expect the maximum in G/GN to be around T ≈ 5Ec/kB [48]. However,
since we have taken into account of the temperature dependence of the superconducting gap in our
calculations, the maximum in conductance occurs at a higher temperature, ≈ 9Ec/kB.



32

well-known proximity effect and reentrance behavior, which has been studied both ex-

perimentally [61, 62, 63] and theoretically [56, 57, 58, 64, 65]. This non-monotonic

temperature dependence is a result of the competition between two effects. One is the

penetration of superconducting correlations from the superconducting reservoir into

the normal-metal wire, which increases the value of G; another effect is the reduction

of the DOS of quasiparticles (pseudogap) at very low temperatures, which reduces

the value of G. The reduction in GT /GT
N , however, is monotonic as a function of

temperature. It stems only from the reduction of the DOS of quasiparticles, since

the induced superconducting correlations in the normal-metal wire would not carry

any thermal current. Hence, the Wiedemann-Franz law [11] breaks down in such

system. Moreover, as noted by Andreev [10], for a NS interface, GT /GT
N vanishes at

a temperature well below Tc.

If we replace the superconducting reservoir in Fig. 2.1 with another normal

reservoir, the entire device becomes a normal-metal system. Consequently, the so-

lutions of the Usadel equation (2.35) change to the simplest form: θ(x) = 0 and

φ(x) = 0 for x ∈ [0, L]. Consequently, D0 = 1 and D3 = 1, and Eqn. (2.67) reduces

to

G = 2e2N0D = constant,

GT =
2π2N0DT

3
= £0GT, (2.68)

where £0 = π2/3e2 is the Lorenz number. This is exactly the Wiedemann-Franz law,

but re-discovered in the language of the quasiclassical theory of superconductivity.
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2.2.3. Thermal conductance of Andreev interferometers

In this section, we calculate the thermal conductance GT of diffusive Andreev inter-

ferometers with two different geometries relevant to our experiments. The calculation

shows that the presence of the superconductor suppresses GT . However, unlike the

proximity-coupled normal-metal wire discussed in the previous section, GT /GT
N does

not vanish at a temperature well below Tc, but saturates at a finite value that depends

on the barrier resistance r of the NS interfaces and their distance from the path of

the temperature gradient. It also has been shown that the reduction of GT results

from the suppression of the DOS in the proximity-coupled normal metal along the

path of the temperature gradient. In addition, we find that GT /GT
N is non-linear,

varying with the thermal current IT approximately as
√

IT for intermediate values

of IT . Finally, GT oscillates periodically as a function of the applied magnetic flux,

with a fundamental period of one flux quantum Φ0 = h/2e. As with the electric

conductance, the thermal conductance oscillations are symmetric with respect to the

applied magnetic flux.

Figure 2.4 illustrates the two types of Andreev interferometers calculated in this

section. Following the terminology used in Ref. [17], we call them: (a) the “house”

geometry and (b) the “parallelogram” geometry. Our intent here is to determine the

effect of sample geometry and finite NS interface resistance on GT .

The thermal conductance of such Andreev interferometers can only be calcu-

lated numerically. Again, we are going to follow the simulation routine introduced

previously and start with the assumption that there is no superconducting gap in

the proximity-coupled normal metal, ∆ = 0. Therefore, the Usadel equation can be

written in the form of Eqn. (2.35). However, to close the set of equations, we must
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Figure 2.4. Schematic of Andreev interferometers with two different
geometries: (a) “house” and (b) “parallelogram”.

specify the boundary conditions for θ and φ at the NS interfaces and at the nodes

where multiple one-dimensional normal-metal segments meet. At the NS interfaces,

in the limit of low transparency, the boundary conditions can be expressed as Eqn.

(2.54). In case of perfect interfaces, r = 0, these boundary conditions reduce to the

continuity equations of the θ function and the phase φ across the interface, i.e., θ and

φ obey the reservoir boundary conditions Eqn. (2.50). In addition, the major con-

tribution to the phase φ is from the applied magnetic flux. Since the critical current

in the superconducting loop is much larger than that in the proximity-coupled nor-

mal metal, we could assume that all the phase drop occurs across the normal-metal

wires between two NS interfaces. In the following simulation, we will apply the phase

change ∆φ symmetrically between the two NS interfaces. For example, for an applied

flux of Φ0/2 (i.e., ∆φ = π) through the area of the Andreev interferometer loop, we

set the phases φ at the two NS interfaces to be −π/2 and π/2 respectively. For a

normal reservoir, the absolute value of φ is meaningless, but the gradient ∂xφ must be

0 to assure no supercurrent in it. For a node, assuming one-dimensional wires of equal

cross-section, the boundary conditions reduce to the condition that the parameter θ
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Figure 2.5. Normalized DOS N(x, E)/N0 for the “house” interferome-
ter along the path of the temperature gradient for r = 0 and L/L′ = 10.
(a) ∆φ = 0; (b) ∆φ = π.
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and φ must be continuous at the node, and
∑

∂xθ = 0,
∑

∂xφ = 0, where the sum is

over all wires emanating from the node.

After all the efforts above, we should be able to solve the Usadel equation (2.35)

and calculate the DOS of quasiparticles in these devices. Figure 2.5(a) illustrates the

normalized DOS, N(x, E)/N0 = cosh(<(θ)) cos(=(θ)), for the “house” interferometer

along the path of the temperature gradient from x = 0 to x = 2L, for ∆φ = 0,

r = 0 and L/L′ = 10. It shows that the maximum suppression is reached at the

node (x = L). However, unlike a conventional superconductor [66], N(x, E)/N0 does

not vanish at E < ∆, which is consistent with Fig. 2.7(a) and (b) that GT /GT
N is

suppressed, but remains finite as T → 0. For the “parallelogram” interferometer, as

shown in Fig. 2.6(a), an even larger suppression has been observed in N(x, E)/N0

due to the presence of the middle segment. Note that the DOS can be tuned by the

applied magnetic flux Φ for both geometries. While ∆φ = π (shown in Fig. 2.5(b) and

Fig. 2.6(b)), the suppression in N(x, E)/N0 of the “house” interferometer has been

removed completely and it is strongly reduced for the “parallelogram” interferometer

as well.

The next step is to calculate Q and Mij by using the values of θ and φ obtained

from the solutions of the above Usadel equation. We then solve the kinetic equations

(2.46) for the non-equilibrium distribution functions, hL and hT
4. Finally, we calculate

the electric and thermal conductance of Andreev interferometers.

In general, to determine the thermal current through an Andreev interferome-

ter, one must consider the supercurrent flowing between the two NS interfaces in the

presence of a magnetic field, although the terms involving the supercurrent make the

4In the normal and superconducting reservoirs, the boundary conditions of hL and hT are expressed
by Eqn. (2.55).
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Figure 2.6. Normalized DOS N(x, E)/N0 for the “parallelogram” in-
terferometer along the path of the temperature gradient for r = 0,
L/L′ = 10 and L′′/L = 0.66. (a) ∆φ = 0; (b) ∆φ = π.
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kinetic equations much more difficult to solve. However, for the geometries shown in

Fig. 2.4, some simplifications can be made. For the “house” geometry, as shown in

Fig. 2.4(a), a temperature differential ∆T has been established across the two nor-

mal reservoirs, i.e., the right normal reservoir is at a temperature of T and the left

reservoir is at a temperature of T +∆T . Since there is no supercurrent flowing in the

segments connected to the two normal reservoirs, the phase φ in these segments is a

constant, ∂xφ = 0. Furthermore, applying the boundary conditions for the phase φ as

discussed above, we get φ = 0 at the central node by symmetry. It should be pointed

out that φ = 0 at the central node is also confirmed by the results of numerical solu-

tions after we solve the Usadel equation. Hence, we can take φ = 0 in the segments

connected to the two normal reservoirs and calculate Q and Mij accordingly, which

turn out to be Q = 0 and M03 = M30 = 0. Following the derivation performed in the

previous section for the proximity-coupled normal-metal wire, one can write down

the thermal conductance of the “house” Andreev interferometer as

GT =
N0D

2T 2

∫

dE
E2

cosh2(E/2T )

[
∫ 2L

0

1

M00
dx

]−1

. (2.69)

Figure 2.7(a) shows the normalized thermal conductance GT /GT
N of the “house”

interferometer as a function of the normalized temperature T/Tc, for a sample with

perfectly transparent NS interfaces (r = 0). The length L of one normal-metal seg-

ment attached to a normal reservoir defines the correlation energy Ec = ~D/L2 (see

Fig. 2.4). As in the previous section, we choose ∆ = 30.3Ec, i.e., Tc = 17.2Ec,

related closely to the values in our experiments. The different curves in Fig. 2.7(a)

correspond to different lengths L′ of the normal-metal segments from the central node

to the superconducting reservoirs. Notice that GT differs appreciably from its normal
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Figure 2.7. Normalized thermal conductance GT /GT
N of the “house”

interferometer ((a) and (b)) and the “parallelogram” interferometer
((c) and (d)) as a function of the normalized temperature T/Tc. (a)
and (c): for different L/L′; (b) and (d): for different r. The insets in
(a) and (c) show the oscillations of GT /GT

N as a function of the phase
φ.
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state value GT
N only at temperatures below Ec/kB, and GT /GT

N saturates as T → 0.

The overall decrease in GT /GT
N depends on L′. As expected, the smaller L′, the larger

proximity effect and the larger decrease in GT /GT
N .

The normalized thermal conductance GT /GT
N of the “house” interferometer

decreases monotonically as one decreases the temperature below Tc. This decrease is

directly associated with the suppression of the DOS along the path of the temperature

gradient. On the other hand, the electric conductance G of such devices behaves non-

monotonically as a function of the temperature, showing the well-known reentrance

effect. Hence, as indicated in both Fig. 2.5 and 2.7, the Wiedemann-Franz law is

violated for such devices.

Any parameter that affects N(x, E) will modify GT . As shown in Fig. 2.7(a),

the distance L′ from the superconducting reservoir to the central node is one of

such parameters. A second parameter is the NS interface resistance r. A larger

value of r, i.e., a lower transparency of the interface, would reduce the proximity

effect in the normal metal, leading to a smaller suppression in GT . This picture is

supported by Fig. 2.7(b), where GT /GT
N as a function of T/Tc for L/L′ = 10 has

been plotted for a number of different values of r. The greatest suppression in GT

appears when r = 0. Since both L′ and r affect GT , understanding the dependence

of GT on L′ and r is crucial for a quantitative analysis of the experimental results.

Moreover, the simulations suggest that, in order to observe the largest suppression in

GT , it is important to improve the alignment ability (to reduce L′) and the interface

transparency during the sample fabrication process.

The third parameter that affects N(x, E) is the applied magnetic flux. Figure

2.5(a) shows the normalized DOS, N(x, E)/N0, for zero phase difference (∆φ = 0)
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between the two superconducting reservoirs; Fig. 2.5(b) shows N(x, E)/N0 for ∆φ =

π, corresponding to half flux quantum Φ0/2 through the interferometer loop. For

∆φ = π, N(x, E)/N0 is essentially constant between the two normal reservoirs at a

value corresponding to the normal state DOS, N(x, E)/N0 = 1. Consequently, GT

regains its normal state value GT
N at ∆φ = π, so that GT shows full scale oscillations as

a function of magnetic flux. This can be seen in the inset of Fig. 2.7(a), which shows

GT as a function of φ for r = 0 and L/L′ = 5 at a temperature of T/Tc = 0.029. The

observation of full-scale oscillations is directly related to the symmetry of the “house”

interferometer. Further simulations show that if the distance from the central node

to one of the superconducting reservoir was not exactly same as the corresponding

length in the other side one, or the two NS interfaces had different barrier resistances,

there would still be a suppression of DOS at the central node even for ∆φ = π. Hence,

we would not be able to obtain full scale oscillations.

We now turn to discuss the results of the “parallelogram” interferometer. Ba-

sically, as shown in Fig. 2.7, the major results of the “parallelogram” interferometer

are similar to the “house” configuration. Therefore, in the following discussion, we

will mostly focus on the differences between them. For a “parallelogram” interferom-

eter (shown in Fig. 2.4(b)), in addition to the two normal-metal segments of length

L connected to the normal reservoirs, we also have a normal-metal segment of length

L′′ in the path of the temperature gradient. In the later calculations, we will use

a typical experimental value of L′′/L = 0.66, and keep all other parameters same

as those used for the “house” interferometer. Since this additional segment lies be-

tween the two superconducting reservoirs, when magnetic flux is applied to such a

system, a supercurrent would flow in this segment. Therefore, the first two terms
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in Eqn. (2.58) cannot be ignored any more as with the “house” configuration, and

the kinetic equations would have a relatively complex form. However, since V in the

superconducting reservoirs is set to zero, hT = 0 at the superconducting reservoirs,

so that the terms involving hT are small, and can be ignored. It is important to

point out that this assumption is very reasonable, because it is actually supported

by detailed numerical simulations [22], where the solutions of the kinetic equations

with and without this assumption are quite close. Consequently, we can continue to

use Eqn. (2.69) to calculate GT , except that the integral of 1/M00 is over the three

normal-metal segments along which the thermal current flows.

GT /GT
N vs. T/Tc for the “parallelogram” interferometer has been shown in

Fig. 2.7(c) and (d) for different values of L/L′ and r. Compared with the “house”

interferometer, a deeper suppression of GT has been observed, which is associated

with the broad suppression of DOS in the middle segment of the “parallelogram”

interferometer (as shown in Fig. 2.6). Moreover, we also find that, as in the “house”

interferometer, GT of the “parallelogram” interferometer oscillates periodically as a

function of the applied magnetic flux. As shown in the inset of Fig. 2.7(c)), the

oscillations are symmetric with respect to the phase φ. However, unlike the “house”

interferometer, GT never reaches its normal state value GT
N even at ∆φ = π, because,

as shown in Fig. 2.6(b), there would always be a finite suppression in DOS around

the two nodes of the “parallelogram” interferometer.

We should also note that the above simulations are in the linear response

regime, because we have taken the linear response limit of Eqn. (2.62) to calculate GT .

However, in our experiments on the thermal conductance of Andreev interferometers,

we find that GT is actually a strongly non-linear function of the thermal current IT
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through the sample [13, 15]. In order to investigate this non-linear dependence of

GT on IT , we numerically calculate the right side of Eqn. (2.62) for specific values

of ∆T across the interferometer. In this calculation, GT is still defined by the ratio

IT /∆T , but it is no longer given by the linear response result of Eqn. (2.69). As

shown in Fig. 2.8, the calculated GT is non-linear as a function of IT for both the

“house” and the “parallelogram” interferometers, since if GT were linear for small IT ,

we would expect a curve which had zero slope at IT = 0, which is clearly not seen

in the figure. In addition, at intermediate values of the thermal current, GT varies

as
√

IT , shown by the dashed lines in the figure. Based on Fig. 2.8, we can estimate

that the deviations from the
√

IT behavior are seen at IT < 4.3 × 10−2 GT
NEc and

the linear response regime is approached for values of IT less than 4.3× 10−4 GT
NEc.

A similar dependence of GT is also observed in the experiments, and we will discuss

it further in Chapter 4.

Before we close the discussion of the thermal conductance of Andreev interfer-

ometers, we should not forget to mention the work by Bezuglyi and Vinokur (BV)

[14], in which they calculated the thermal conductance GT of a NSN sandwich-like

structure and the thermal conductance oscillations in a “house”-like Andreev inter-

ferometer. The schematic of the studied systems has been shown in Fig. 2.9, adapted

from Ref. [14]. But before we move onto the main results of BV’s work, we would

like to clarify that the devices BV studied are significantly different from ours. In

BV’s model, there always is a superconductor in the path of the thermal current.

External parameters, which can modify the magnitude of the superconducting gap,

will potentially affect GT . In another words, the calculated GT in BV’s work is com-

pletely dominated by the superconducting portion of the device along the thermal
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Figure 2.8. Solid lines represent the strongly non-linear GT as a func-
tion of the thermal current IT for both (a) the “house” and (b) the

“parallelogram” interferometers. Dashed lines illustrate the
√

IT de-
pendence of GT at intermediate values of IT .
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Figure 2.9. Schematic of the devices discussed by Bezuglyi and Vi-
nokur. (a) A normal diffusive wire coupled with a superconducting
wire in the limit of w � ξ0, i.e., the width of the superconducting wire
is much less than the coherence length of the superconductor; (b) A
“house” interferometer in the short SNS junction limit, i.e., the length
of the normal-metal wires between the two NS interfaces is much less
than the coherence length. (Adapted from Ref. [14])

path. In contrast, in our devices as shown in Fig. 2.4, the two superconducting reser-

voirs are away from the path of the thermal current. The superconductivity effect

can only penetrate into the normal-metal wires, but not open a real gap to intercept

the thermal current. Hence, we calculate GT in the true proximity regime.

The first geometry BV studied is a NSN sandwich-like structure. As shown in

Fig. 2.9(a), it is essentially two diffusive normal wires coupled with a superconducting

wire over a region much smaller than the coherence length of the superconductor5,

w � ξ0. The thermal conductance GT of this geometry is analyzed as a function of a

parameter r that measures the relative amplitude of the proximity effect. Since the

narrow superconducting wire is sandwiched between the two normal-metal wires along

which the thermal current flows, GT rapidly decreases with temperature due to the

reduced thermal conductance of the superconductor. In contrast to our calculation,

5In our devices, ξ0 ≈ 100 nm for Al, and w is typically 50-100 nm. w is comparable to ξ0.
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their analysis shows that for a strong proximity effect (in the limit of r � 1), the

thermal conductance approaches its normal state conductance. For r � 1, where the

spectrum in the superconductor is not affected, there is a strong suppression of the

thermal conductance. This is the so-called inverse proximity effect: as the coupling to

the normal metal becomes stronger, the thermal conductance of the superconducting

part increases. At very low temperatures, the Usadel equation has analytic solutions,

the normalized thermal conductance obeys a powerlaw-like temperature dependence

GT /GT
N ∝ T 4.

In terms of the magnetic field dependence of the thermal conductance, BV

calculate it for a “house” type Andreev interferometer, but in the short SNS junction

limit, i.e., the length of the normal-metal wires between the two superconducting

reservoirs is much less than the coherence length. Moreover, they assume that the

normal state conductance of the superconducting loop to be much larger than the

conductance of the normal-metal wires, so that the presence of the normal-metal

wires would not change the quasiparticle spectrum significantly in the junction. In this

limit, one can apply a phase dependent superconducting gap Eg(φ) = ∆| cos(φ/2)|

at the central node where all normal-metal segments meet, so that their model of

a NSN sandwich-like device can again be applied, but now with a phase dependent

gap in the superconductor. At φ = 0, a full superconducting gap opens up and

intercepts the heat flow; at φ = π, ∆ = 0 and GT → GT
N . Consequently, one sees a

100% modulation of the thermal conductance on varying the phase. However, in our

simulation, where we do not make those simplifying assumptions, the phase modulates

the thermal conductance by about 10%, which is more in line with the experimental

observations. In addition, from an experimental point of view, we note that some of
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the simplifying assumptions in BV’s calculations make quantitative comparison the

experiments difficult.

2.2.4. Symmetry of thermopower oscillations in Andreev interferometers

As a temperature differential ∆T is established across a metallic sample and no

electrical current is allowed to flow through it, an induced electrostatic potential

differential ∆V will be set up across the sample. The thermopower S is defined as

the ratio of the induced voltage differential to the applied temperature differential S ≡

∆V/∆T . For canonical metals, the thermopower is related to the energy-dependent

conductivity σ(ε) by Mott’s relation [12]

S = −π2

3

k2
BT

e

σ′(εF )

σ(εF )
, (2.70)

where σ(εF ) the dc conductivity evaluated at the Fermi energy εF and σ′(εF ) =

∂
∂ε

σ(ε)|ε=εF
. In the framework of Fermi liquid theory, the thermopower stems from

breaking of electron-hole symmetry, and arises from the second term in the Sommer-

feld expansion of the Fermi distribution function [12]. For a typical metal (such as

pure gold), this term is governed by a pre-factor kBT/εF and is usually very small

(less than 1 µV/K at low temperatures).

Equation (2.70) indicates that a large thermopower might be expected in sys-

tems where the conductivity depends on the energy ε of the quasiparticles near εF .

Superconductor is one of such systems and has been studied extensively since 1970s

[67, 68, 69, 70, 71, 72]. Following Eqn. (2.66), S = η/G under the condition that

I = 0. The thermoelectric coefficient ηS of the superconductor was first calculated
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by Gal’perin et al. using a quasiclassical Boltzmann equation method [69], in which

ηS = ηNG(∆/kBT ), (2.71)

where ηS (ηN) is the thermoelectric coefficient in the superconducting (normal) state

and the function G(x) is given by

G(x) =
6

π2

∫ ∞

x

y2dy

cosh2(y/2)
. (2.72)

In the high temperature limit (kBT � ∆), G(x) → 1 and ηS → ηN . At low tem-

peratures (kBT � ∆), ηS decreases exponentially with decreasing the temperature.

In a bulk superconductor, however, because ∆V = 0 in a steady state, one cannot

directly measure the thermoelectric voltage induced by the applied temperature gra-

dient. On the other hand, one also cannot directly detect the total thermal current

in the system, since the resulting thermal current of the quasiparticles is canceled

by a counterflowing supercurrent. Hence, to obtain the thermoelectric coefficient ηS,

one needs to separate the normal and superconducting components of the current.

The thermoelectric response of the superconductor was first measured by Clarke and

Freake by detecting the thermally induced supercurrent in a point-contact Josephson

junction system with an applied temperature gradient [67]. More related experiments

in SNS junctions were performed later by Kartsovnik et al. [71] and Ryazanov et al.

[72].

The focus of the above early work was on the thermoelectric response of super-

conductors, rather than on proximity-coupled normal metals. Mott’s relation (2.70)

is predicted to no longer be valid in the proximity regime [73, 74, 20]. In Ref. [73],
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Claughton and Lambert (CL) numerically calculated the thermopower of specific NS

device geometries by solving the Bogoluibov-de Gennes equations. Their simulations

were performed in the clean limit and showing that the amplitude of the thermopower

of a normal metal wire in proximity to a superconductor is of the order of

S ∼ 0.01Nch
π2

e

k2
BT

EF
, (2.73)

where Nch is the number of channels in the wire. Inserting the typical values for our

devices, we estimate the amplitude of the thermopower as ∼ 1 µV/K at a temperature

of 0.5 K. In addition, CL’s calculation also shows that, for an Andreev interferometer,

the thermopower oscillates as a function of the phase difference ∆φ between the two

NS interfaces. Although both the electric conductance and the thermal conductance

of an Andreev interferometer are always symmetric with respect to ∆φ, the symmetry

of the thermopower depends on the topology of the sample. For samples with an

axis of mirror symmetry with respect to the two NS interfaces, the thermopower

is expected to be symmetric as a function of ∆φ. In a sample with no particular

geometrical symmetry, the thermopower also has no unique symmetry with respect

to ∆φ.

The thermopower of Andreev interferometers with different geometries has

been measured recently6 [17, 18, 19]. In these experiments, which include some of

our own, the measured thermopower was found indeed much larger than the values

estimated from Mott’s relation. In addition, the thermopower oscillations have also

been observed as a function of magnetic flux with a period corresponding to one flux

6Note that all these experiments are performed in diffusive metal systems in the dirty limit.
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quantum Φ0 = h/2e, which again demonstrates the phase coherent nature of electrons

in such devices.

Our group has been investigating the symmetry of the phase-coherent ther-

mopower oscillations in Andreev interferometers for more than six years. We find

that the symmetry of the oscillations can be either symmetric or anti-symmetric, de-

pending on the geometry of the sample. For Andreev interferometers similar to the

“parallelogram” configuration, we always observe anti-symmetric oscillations; while

for the “house” type interferometers, we find that the thermopower oscillations are

symmetric.

This symmetry issue is attracting interest from theorists. In the early work of

Seviour et al. and Kogan et al., they suggest that the thermopower of NS structures

may arise from the branch imbalance under non-equilibrium conditions in the presence

of a superconductor [20, 21], where the branch imbalance implies the difference

between the electron-like and hole-like branches of the excitation spectrum. It also

has been shown that the imbalance is a periodic function of the phase, resulting

in a phase-coherent thermopower oscillations. In this picture, the supercurrent in

the superconductor may not be equal to the supercurrent in the proximity-coupled

normal-metal wires (the wires between the two superconducting reservoirs) in the

presence of a magnetic field. This difference leads to conversion of the supercurrent

to quasiparticle current. The quasiparticle current can carry a thermal current and

results in the appearance of an electric potential Vimb in the loop of the Andreev

interferometer. However, as we mentioned before, a superconductor is a poor thermal

conductor at low temperatures. Thermal current is not allowed to circulate in the

loop of the Andreev interferometer, which is mostly fabricated from superconductor.
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Consequently, the thermal current would leak out from the nodes to the normal

reservoirs and generate a finite thermal voltage Vth across the two normal reservoirs.

It is obvious that Vth in the “parallelogram” interferometer is anti-symmetric with

respect to the applied magnetic field, because the supercurrent is anti-symmetric in

the middle segment of such devices. As for the “house” geometry, the thermal current

can only flow out from the central node (point connection) of the interferometer.

Hence, one would naturally expect a symmetric oscillation in Vth.

Extending our thermal conductance calculations above, we can also investi-

gate the symmetry of thermopower oscillations qualitatively. From Eqn. (2.57), we

know that the symmetry of the phase dependent thermopower oscillations is deter-

mined by the integrand, (Q · hL + M03 · ∂hL + M33 · ∂hT ), where the longitudinal

(transverse) distribution functions, hL(hT ), are functions of ∆V and ∆T across the

sample. Expansion of ∂hT in the third term in the integrand gives a term that de-

pends only on ∆V , but not on ∆T . Therefore, this term has no contribution to the

off-diagonal or thermoelectric term, which relates the electrical current j through the

sample to the temperature differential ∆T across the sample. This is in agreement

with the well-known fact that the derivation of the quasiclassical approximation as-

sumes particle-hole symmetry, and hence throws out from the beginning the usual

small thermoelectric effects found in a typical metal. However, there are more terms

in the integrand of Eqn. (2.57). The first two terms actually do have a component

proportional to ∆T , and generate the thermoelectric effect. As shown in Eqn. (2.47)

and (2.48), M33 is symmetric with respect to the applied magnetic flux, while Q

and M03 are anti-symmetric. Although Q and M03 are usually small, in some cases



52

such as in the well-known charge imbalance regime of superconductor, pronounced

thermoelectric effects have been observed [75, 76, 77].

Recently, Virtanen and Heikkilä (VH) also examined the thermopower of An-

dreev interferometers by solving the Usadel equation (2.35) and the kinetic equations

(2.46) numerically [22]. Their simulation indeed shows that the terms involving Q

and M03 lead to a dominant thermoelectric contribution which is anti-symmetric as

a function of the phase φ. According to VH, the contribution from Q is the zero

order contribution, which is much larger than the one from M03 (first order contribu-

tion), indicating that the origin of the symmetry of the thermopower oscillations is

more related to the supercurrent in the devices. In order to illustrate VH’s results,

let us consider the “parallelogram” interferometer. A typical Andreev interferome-

ter is designed so that the Josephson coupling between the two NS interfaces of the

interferometer is strong at low temperatures. Therefore, if one applies a magnetic

field on such devices, a diamagnetic supercurrent will be generated and circulate in

the interferometer loop. This supercurrent is anti-symmetric in the applied magnetic

flux. Furthermore, if one also considers the applied temperature differential across the

sample, one would expect a corresponding temperature gradient between the two NS

interfaces. As we known, the supercurrent is very sensitive to the temperature. Hence,

the supercurrent coming out of one NS junction will not be the same as the current

going in to the second junction. In order to conserve the total current, the excess

supercurrent must convert into quasiparticle current and go to the normal-metal side

arms. Since the thermopower is measured under the condition that there is no elec-

trical current through the sample, a thermoelectric voltage Vth must develop to cancel

the contribution due to the excess current. Vth will be anti-symmetric with respect
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to the applied magnetic flux, as the supercurrent is anti-symmetric. The amplitude

of Vth is directly related to the resistance of the side arms; the larger the resistance,

the larger the thermal voltage generated and hence the larger the thermopower.

VH’s analysis has successfully explained the anti-symmetric behavior of the

thermopower oscillations of the “parallelogram” interferometer. But, unfortunately,

it cannot explain the symmetric thermopower oscillations observed in the “house”

configuration, because their interpretation requires the two NS interfaces to be at

two different temperatures, which is not true for the “house” interferometer. For the

“house” configuration, since the superconductors act as thermal insulating boundaries

at low temperatures, there is no thermal current along the normal-metal arms between

two NS interfaces. Therefore, one would expect that both NS interfaces should be at

the same temperature. On the other hand, for a symmetric “house” interferometer as

shown in Fig. 2.4(b), Q = 0 and M03 = 0, so that Vth = 0 in the normal-metal wires

along the path of the thermal current. Indeed, VH explicitly state in their papers that

their model cannot explain the symmetric thermopower oscillations observed in the

experiments. However, VH also realize that the “house” interferometers measured

in the experiments are actually not symmetric, where one of the side arms is much

longer than another. Therefore, VH explain the symmetric thermopower oscillations

in the “house” interferometer as a geometry effect.

In summary, we should emphasize that all the above theoretical studies sug-

gest that the conversion from the supercurrent to quasiparticle current is the key to

understanding the origin of the symmetry of thermopower oscillations.



CHAPTER 3

Experimental techniques

In the following chapter, we will first briefly describe the nanolithography tech-

niques used in the sample fabrication process during this thesis work, ranging from

substrate cleaning, photolithography, electron-beam (e-beam) lithography, etching

and metalization to liftoff. Since many common techniques have been discussed in

the thesis work of former graduate students of our group [78, 79, 80], we will mostly

focus on the new techniques developed in the last few years. In addition, we will also

describe the measurement techniques related to the experiments, including cryogenics,

electronics and low noise measurements.

3.1. Sample fabrication

3.1.1. Wafer preparation

The typical wafer used in our devices is a one-side polished Si wafer1 (0.02 inch thick)

with a 30 nm oxidized layer covered on the surface. With a voltage differential less

than 1 V, a 30 nm Si2O3 layer is thick enough to prevent leakage current from the

metallic film sitting on the surface to the Si substrate, but does not result in significant

charging effects in a scanning electron microscope (SEM).

The wafer needs to be prepared carefully, because there may be some chemical

contaminants even on the surface of a new chip. In addition, the wafer is normally

1From Polishing Corporation of America.
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cut by a diamond scriber into small pieces; many scraps may reside on the surface

after cutting. The cleaning procedure is as follows.

(1) Soak the wafer in acetone using ultrasonic cleaning for about 3 minutes. The

ultrasonic bath usually works very well to remove the scraps from the chip

and the acetone can remove the grease or organic contaminants.

(2) Soak the wafer in isopropanol with ultrasonic cleaning for another 3 minutes.

(3) Rinse the wafer in 18 MΩ distilled (DI) water for 1 minute to take off the

inorganic residues, such as salt.

(4) Rinse the wafer in isopropanol again for 1 minute to dissolve the water.

(5) Blow the wafer dry with pure N2 gas immediately after taking the wafer out

from the last rinse of isopropanol.

If the wafer is clean, when it is blown dry, the isopropanol should come off in

a clean and uniform film on the wafer. If there is any dirt on the wafer, the film will

get stuck on the dirt spots. If this occurs, the above cleaning procedure should be

repeated until a clean surface is obtained. Furthermore, it needs to be pointed out

that, except for the last drying step, one should not let any part of the wafer get dry,

or else any residues in the solvent will dry on the wafer and will be difficult to remove

later.

However, sometimes, the above procedure is still not enough, especially for old

wafers which have been used for lithography before, because the residue of PMMA2

and MMA/MAA3 can stick to the surface of the wafer tightly. In this case, O2 plasma

etching (about 3 minutes) is required.

2950K molecular weight polymethylmethacrylate dissolved in anisole (4% by weight). From Mi-
croChem Corp..
3Methylmethacrylate-co-methacrylic acid. From MicroChem Corp..
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Figure 3.1. Schematic of the homemade dc plasma etcher for O2 plasma etching.

The etcher used for such general cleaning is a homemade dc plasma etcher (see

Fig. 3.1) built by a previous graduate student, José Aumentado. During the etching,

the sample sits on a grounded stage and faces the counter-electrode which is about

3/4 inch away. Both the sample stage and the electrode are made of stainless steel.

A clean glass tube is used to isolate the electrode and the sample stage from other

parts of the etcher so that a relatively uniform plasma is generated on the top of the

sample surface. After loading the sample into the etcher, the chamber is first pumped

down by using a sorption pump (cooled down by liquid nitrogen) to base pressure,

which is about 10 mTorr as read by a TC gauge. Pure O2 gas is then introduced

into the chamber and the flow is adjusted by the needle valve to keep the chamber

pressure around 100 mTorr, while pumping with the sorption pump. In the next step,

a -700 V dc voltage is applied by a SRS PS325 high voltage power supply4 on the

counter-electrode. Normally, by the time the power supply is turned on, a light-green

4From Stanford Research Systems.
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O2 plasma is generated. The plasma current is maintained at about 1.2 mA (as read

by the power supply) by adjusting the O2 flow using the needle valve. We use the

etching time as the only tunable factor during the etching and keep the chamber

pressure, dc voltage and plasma current constant. Under the above conditions, the

etching rate as determined from atomic force microscope5 (AFM) measurements is

1.5 nm per second.

Another candidate for O2 plasma etching is the homemade reactive ion etching

(RIE) system built by Zhengfan Zhang, which is powered by a PE-1000 ac plasma

power source6 at about 400 V. As with the dc plasma etcher, we normally keep the

flow rate of the O2 gas at about 100 mTorr and control the etching depth by tuning

the etching time. Since this system is much more powerful than the dc etcher, it is

not suggested to use it to remove a very thin layer of PMMA, but it is still good

for general cleaning purposes like cleaning a wafer prior to sample fabrication. The

typical time for general cleaning is 1 min. Details about this system will be described

in the thesis of Zhengfan Zhang [81].

Note that both these two etchers are suitable for both dc and ac O2 plasma

etching with the appropriate power supply. We subjectively devote the first to quan-

titative dc plasma etching and the second to ac plasma etching at higher power.

In addition, both these two etchers are also suitable for Ar+ plasma etching. Ar+

plasma etching is a different process compared with the O2 plasma etching. It is a

mechanical process, which can be used to peel off a thin layer of metal to remove its

oxidized surface. The O2 plasma etching, on the other hand, is a chemical process,

which can be used to clean the substrate by removing the organic components like

5From Thermomicroscopes.
6From Plasma-Therm, Inc..
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PMMA residue. However, during the Ar+ plasma etching, charges may accumulate

on the substrate and potentially can blow out the structures already patterned on

it. In our experience, to avoid this problem, the substrate should be mounted on

the counter-electrode with a good electrical contact with it (we normally use silver

paint). A detailed description about Ar+ plasma etching in an in situ etcher will be

introduced later.

3.1.2. Photolithography

The typical size of a mesoscopic device fabricated in our laboratory is about 60 µm ×

60 µm. However, in order to make transport measurements, we need to make electrical

contacts to it. Hence, large area metal pads are necessary in order to connect the

device to room temperature electronics. Although e-beam lithography is suitable for

patterning such large area patterns, it is time consuming to make many of them.

Therefore, photolithography is preferable.

Three different ways have been used in the past few years in our group to

pattern the large area contact pads. Initially, we used the ultraviolet (UV) light gen-

erated by a Quintel Q-2001 CT mask aligner7 in Prof. Ketterson’s group to expose

the substrate. The step by step procedure for this method has been described by José

Aumentado in his thesis work [80]. The disadvantage of this method is that only a

single layer of photoresist is used, so that one is not be able to make an undercut

profile. Therefore, after deposition and liftfoff, one may have ragged edges on the

metal pattern, which potentially can cause connection problems to subsequent fabri-

cation layers. Because of the above reason, we then switched to bilayer photoresist

7From Quintel Corp..
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and deep-UV exposure using a Quintel Q-4000 mask aligner in the Materials Research

Center clean room. This method used to work very well. However, more recently,

for reasons that are not entirely clear, we started to get inconsistent results. Hence

we developed a new method that only requires a simple halogen lamp instead of a

massive mask aligner to make the large area contact pads. The advantage of this

method is that, with a relatively simple setup, one can get a well developed undercut

(∼ 0.5 − 1 µm) after exposure, eliminating the connection problems. In this thesis,

we are going to focus on this method. The fabrication details are listed below, and

also demonstrated in Fig. 3.2.

(1) First layer. Spincoat8 the polished surface of the substrate with LOR-7B9 at

a speed of 4000 RPM for 30 seconds. Bake the substrate in an oven at 170

℃ for 45 minutes.

(2) Second layer. Spincoat the substrate with a layer of Shipley 1813 photore-

sist10 at a speed of 3000 RPM for 40 seconds. Bake the substrate at 110 ℃

for 30 minutes.

(3) Exposure. The schematics of the setup for the exposure process are illus-

trated in Fig. 3.3, where we have a halogen lamp on the top and a home-

made mask aligner11 underneath. The technique used here is the so-called

contact mask technique, hence it is crucial to ensure a tight contact between

the substrate and the photomask during the exposure. A gap between the

mask and the wafer would cause undesired patterns and failure to obtain an

8Spinner was purchased from Headway Research, Inc..
9From MicroChem Corp..
10From MicroChem Corp..
11This conformal mask aligner was machined in the University Machine Shop.
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Figure 3.2. Schematics for photolithography: (a) Spincoat the sub-
strate with LOR-7B (bottom layer) and Shipley 1813 photoresist (top
layer). (b) Expose and develop. (c) Metalization. (d) Liftoff.
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undercut due to the optical diffraction effect. The detailed operation proce-

dure is as follows: (i) Unscrew the metal cover of the mask aligner, remove

the thin Mylar sheet and place it face up to prevent contamination. (ii) Blow

the photomask and the substrate with N2 gas to ensure clean surfaces. Then

load in the photomask with copper side facing up on a square polyethylene

spacer and place the substrate face down on the photomask. Align the sub-

strate properly by eye with Q-tips and place the Mylar sheet and the metal

cover back. (iii) Turn on the vacuum. The purpose of the vacuum is to use

the Mylar sheet to press the substrate on to the photomask, in order to get a

tight contact between them, particularly ensuring no air bubbles in between.

(iv) Flip the mask aligner over and align with the halogen lamp. Expose the

substrate under the halogen lamp for 7 minutes. The light of the halogen

lamp essentially goes through a glass window at the bottom of the aligner

and the patterns on the photomask to the substrate, and breaks down the

long polymers in the photoresist into shorter ones, so that the developer can

remove them in the next step.

(4) Development. Develop the Shipley 1813 photoresist layer with the corre-

sponding developer MF-31912 for 60 seconds by using a constant jet of de-

veloper from a wash bottle. Rinse the substrate with DI water and blow it

dry with N2 gas. Develop the LOR-7B layer with SAL-10113 for 2 minutes.

Again, rinse with DI water and dry with N2 gas. After development, a clear

undercut profile can be seen in the LOR-7B layer under the optical micro-

scope.

12From MicroChem Corp..
13From MicroChem Corp..
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Figure 3.3. Schematics of the setup for the photo exposure process,
where we have a halogen lamp on the top and a homemade mask aligner
underneath. When we expose, we need to flip over the mask aligner
in order to get the surface of the substrate exposed in the light of the
halogen lamp.

(5) O2 plasma etching. The purpose of this step is to remove the residue of the

photoresist. For the dc plasma etcher, the typical etching time is 25 seconds.

For the ac RIE system, it is 8 seconds.

(6) Metalization: electron-gun (e-gun) deposition. Deposit 4 nm Ti (4N5) and

25 nm Au (3N5). The purpose of the Ti layer is for adhesion, which ensures

the Au layer adheres to the substrate when we soak the substrate in an

ultrasonic bath in the next step.
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(7) Liftoff. (i) Liftoff the Shipley 1813 photoresist layer by soaking the substrate

in an ultrasonic acetone bath for 2 minutes. (ii) Liftoff the LOR-7B layer

by soaking the substrate in the 1165 stripper for 10 minutes at 70 ℃ on the

hot plate. (iii) Rinse the substrate with acetone and then isopropanol, and

blow it dry with N2 gas. Note that the flash point for the 1165 stripper is 88

℃. We should monitor the temperature carefully in the second step of this

liftoff procedure.

3.1.3. Fabrication of Si3N4 membranes

In order to measure the thermal conductance of mesoscopic samples, it is crucial to

confine the path of the thermal current. One of the most challenging parts of the

confinement is to eliminate the heat leak from the electron bath to the substrate

by electron-phonon scattering. To avoid this problem, of course, a straight forward

way is to go to low temperatures, where the electron-phonon scattering is negligible.

But, there are other ways to achieve it. One of the most popular methods emerging

recently is to fabricate the device on top of a thin Si3N4 membrane [82, 83], by

taking advantage of modern nanolithography technology [84, 85]. During the period

of this thesis work, we also developed a routine to make Si3N4 membrane devices in

our laboratory, which is described in the following (also illustrated by Fig. 3.4).

(1) Wafer. The wafer used here is also a 0.02-inch-thick one-side polished Si

wafer14, but coated with a 50 nm Si3N4 layer instead of SiO2.

(2) Spincoat. Using the parameters mentioned in the previous section, spincoat

the polished surface of the wafer with the Shipley 1813 photoresist and bake

14From Polishing Corporation of America.



64

lithography

������������������������������������������

������������������������������������������

������������������ ������������������

	�	�	�	�	�	�	�	�	�	�	
�
�
�
�
�
�
�
�
�
�


������������������������������������������


�
�
�
�
��������� ������������������

������������������������������������������

������������������������������������������

������������������ ������������������

Siphotoresist

photo−

down
upside

KOH

protection layer

RIE

Si3N4spincoat

CF4

wet etching

������������������������������������������

Figure 3.4. Schematics of the fabrication procedure for Si3N4 mem-
branes: (a) Spincoat both sides of the wafer with photoresist. (b)
Expose the back side of the wafer and develop it. (c) Use RIE to etch
through the Si3N4 layer. (d) Use wet chemical etching (KOH) to etch
down the Si. (e) Flip the wafer over and make patterns onto the top
surface.
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it properly. This layer of coating is just for protection of the top surface of

the wafer. In addition, spincoat the back side of the wafer with the Shipley

1813 photoresist too and bake it.

(3) Exposure. Load the wafer into the Quintel Q-2001 CT mask aligner and

expose an array of 757 µm × 757 µm squares on the back side of the wafer.

The aim is to obtain 50 µm × 50 µm Si3N4 membranes on the top surface

after etching. The exposure time is 30 seconds at a power of 150 W. We

also can expose an array of 807 µm × 807 µm squares for 100 µm × 100 µm

Si3N4 membranes, but they are easy to break in the later multilayer e-beam

lithography process.

(4) Development. Develop the Shipley 1813 photoresist with MF-319 for 60

seconds and rinse the wafer with DI water, then blow it dry with N2 gas.

(5) RIE. Use the homemade RIE system in Prof. Ketterson’s laboratory. Flow

CF4 gas into the chamber and keep the pressure at 50-55 mTorr. Etch the

back side of the wafer for 50 seconds at a power of 46 W.

(6) Cleaning. Wash out the Shipley 1813 photoresist by acetone and rinse the

wafer with isopropanol, then blow it dry with N2 gas.

(7) Wet chemical etching. Dissolve the solid potassium-hydroxide (KOH) in DI

water (20% by weight) in a ceramic pitcher and soak the wafer in it. Use a

hot plate and a digital temperature controller to keep a water bath at 80 ℃

and dip the ceramic pitcher in it. Etch the wafer for about 8 to 9 hours. At

the end of etching, check the wafer by optical microscope every half an hour.

A fully etched Si3N4 membrane looks very bright under the microscope due
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to the penetration of the light. In addition, the membrane should be uniform

and its edges should be smooth.

(8) Cleaning. Wash out the KOH solution with DI water and go through the

standard cleaning procedure to clean up the wafer, except that the ultrasonic

bath is not allowed for Si3N4 membranes, since it will break the membranes

in a second.

3.1.4. E-beam lithography

The procedure for e-beam lithography is similar to photolithography. The main

differences are: (1) we use a JEOL JXA-840 SEM instead of the halogen lamp to

expose the substrate; (2) we use different resists and developer15. The standard e-

beam lithography procedure is as follows.

(1) Spincoat. Spincoat the substrate with MMA/MAA at a speed of 3000 RPM

for 60 seconds. Bake the substrate at 140 ℃ for 30 minutes. Spincoat

the substrate with 950K PMMA at a speed of 8000 RPM for 60 seconds.

Bake the substrate at 170 ℃ for another 30 minutes. For samples with Ni,

permalloy (NiFe) or Cu deposited on it, to avoid the oxidization (or chemical

reactions), we normally bake the substrate at 80 ℃ for one hour for both

above two layers.

(2) Exposure. Expose the substrate by e-beam with desired patterns. This step

is performed in SEM and controlled by a PC computer. Depending on the

substrate, the charge dosage used for exposure is quite different. For example,

15From MicroChem Corp..
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at 5000 magnification, it is 460 µC/cm2 on SiO2 substrates, 650 µC/cm2 on

Si3N4 membranes.

(3) Development. Use Methyl isobutyl ketone-co-isopropanol (MIBK/IPA)16 to

develop the substrate at a temperature of 24 ℃ for 60 seconds by a constant

jet of developer from a wash bottle. Then, rinse it with isopropanol and dry

it with N2 gas.

(4) Plasma etching. For O2 plasma etching, we normally use the dc plasma

etcher. The typical etching time is 25 seconds. In order to increase the

interface transparency between two different types of metals, such as between

N and S or F and S, in situ Ar+ plasma etching has been used to clear the

sample just before the next layer of deposition.

(5) Metalization. We use the homemade e-gun evaporator17 to deposit dirty

metals, such as Ni (4N5), NiFe, Al (5N), Ti (4N5) and Au (3N5). For

clean metals, Au (5N, 6N) and Cu (6N), a commercial Edwards thermal

evaporator18 has been used.

(6) Liftoff. Soak the substrate in acetone for about 5 minutes. Rinse it with

isopropanol, and blow it dry with N2 gas.

At the end of this section, we would like to address three aspects in the e-beam

lithography procedure that are particularly important to the success of our sample

fabrications.

16MIBK is purchased from Fisher Scientific. It is dissolved in the isopropanol solvent at a ratio of
1/3 by volume.
17The e-gun is model 528-5 from TFI Telemark.
18Edwards 306 vacuum coater.
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First of all, noise control. During the patterning, the electron beam raster

of the SEM is controlled by a PC computer via a D/A card19. The schematic of

the control circuit can be found in Ref. [79]. However, recently, this control circuit

suffers from the increase of environmental noise, mostly at the line frequency of 60

Hz. Figure 3.5(a) shows an image of our sample. The edges of the device show a

sawtooth pattern that is due to line frequency interference in the raster scan. The

length scale of the noise pattern is almost 100 nm. This problem has been solved

by replacing the input operational amplifiers LF356 of the circuit with the precision

instrumentation amplifiers AD52420 and connecting their negative input pins to the

common ground of the D/A card and their reference output pins to the ground of the

SEM. With the above modifications, we avoid ground loops in the control circuit and

hence reduce the noise dramatically. Figure 3.5(b) shows an image taken by using

the new circuit, which basically has no visible noise pattern on the edge. We estimate

the length scale of the noise pattern to be 10 nm.

Next, alignment ability. In the fabrication process, probably the most difficult

part of it is to get good alignment between different layers of patterns. As indicated

by the theoretical calculations in Chapter 2, good alignment would help us get larger

signals. The way we do the alignment is as follows: we first pattern alignment marks

onto the substrate, we then use the homemade patterning program developed by Prof.

Chandrasekhar to open an image window just on the top of those alignment marks

and align the next layer of pattern accordingly. Apparently, the precision of the

alignment will depend on the image quality and the stability of the SEM. Figure 3.6

shows a sample with three layers aligned onto one set of alignment marks. These three

19From National Instruments.
20From Analog Devices.
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Figure 3.5. SEM images with and without 60 Hz noise. (a) Taken by
using the old control circuit with the LF356 chips inside. The length
scale of the noise pattern is almost 100 nm. (b) Taken by using the new
control circuit equipped with the AD524 amplifiers. The length scale
of the noise pattern is about 10 nm.
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Figure 3.6. SEM image of a sample with three layers aligned onto one
set of alignment marks. The alignment mismatch between layers is
better than 10 nm.

layers are Ni layer, Au layer and Al layer respectively. We estimate the alignment

mismatch between layers is better than 10 nm for this sample. It should be less than

30 nm in general.

The last one, in situ Ar+ plasma etching. Almost all the physics of interest

near the NS or FS interfaces strongly depends on the quality of the interface. In order

to obtain highly transparent interfaces, in situ Ar+ plasma etching is performed inside

both the e-gun evaporator and the Edwards thermal evaporator to clean the sample

just before the next layer of deposition. The setup of the in situ etching has been

shown in Fig. 3.7, where we simply use a high voltage (2 kV) transformer21 (60

Hz) instead of a commercial radio-frequency (rf) power supply (13.56 MHz). Before

21From United Transformer Company.
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metal Cu Au Ni
rate 0.99 nm/min 1.12 nm/min 0.53 nm/min

Table 3.1. Etching rate for in situ Ar+ plasma etching.

interface Ni/Al (mΩ µm2) Au/Al (mΩ µm2)
in situ Ar+ 20-40 1.4-2.6
external Ar+ 370-19k N/A
external O2 Ni oxidized 17

Table 3.2. Specific resistance of Ni/Al and Au/Al interfaces with and
without in situ Ar+ plasma etching.

etching, we first pump down the chamber of the evaporator. For the e-gun evaporator,

we normally pump it for about 1 hour to ∼ 3 × 10−7 Torr; for the Edwards thermal

evaporator, we pump it for about 3 hours to ∼ 5×10−7 Torr. We then fill the chamber

with 40 mTorr pure Ar gas and turn on the plasma. The generated plasma is stable

and uniform around the sample area. The etching time is typically 80 seconds. After

etching, we pump down the chamber again for several minutes until the pressure is

close to the previous value; we then deposit metal onto the sample. The etching

rate for different metals has been calibrated by AFM measurements, the results are

shown in Table 3.1. A systematic study of the specific resistance also has been done

for FS and NS interfaces, which shows that the in situ Ar+ plasma etching indeed

improves the transparency of the interfaces. For example, as listed in Table 3.2, the

typical Ni/Al interface resistance with in situ Ar+ plasma etching is 20-40 mΩ µm2.

Compared with the interfaces cleaned by an external Ar+ plasma etching, where the

specific resistance changes randomly over a large range of order 0.37-19 Ω µm2, the in

situ cleaned interfaces are quite consistent from sample to sample. To our knowledge,
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transformer
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insulating
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diffusion pump
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Figure 3.7. Schematic of the setup of the in situ Ar+ plasma etching
inside an evaporator. The sample is typically silver-painted on to the
sample stage, where an ac voltage of 500 V is applied during the etching.

the most effective way to increase the transparency of the interfaces is in situ Ar ion

milling, which has a specific resistance of 6 mΩ µm2 [40, 86] for FS interfaces.

3.2. Measurement techniques

3.2.1. Cryogenics

Most of the thermal transport measurements discussed in this thesis were performed

using an Oxford Kelvinox 300 dilution refrigerator capable of a temperature as low as

20 mK. The sample is in vacuum and mounted onto a cold finger that extends from

the mixing chamber. The temperature of the sample is read out by the resistance of a

RuO2 thermometer22 mounted on the mixing chamber. The RuO2 thermometer was

calibrated by another Ge thermometer23 thermally sunk nearby. Although measuring

a resistance seems to be trivial, at low temperatures, special care is needed to avoid

self heating stemming from the measuring current. In our experiments, we use a

22Model SMT1206R from Vector Electronic Company with about 1 kΩ resistance at room temper-
ature.
23Calibrated by Lake Shore Cryotronics, Inc..
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commercial TRMC2 multi-probe regulator24, which is specially designed for the low

temperature measurements with a current as small as 10 pA. To stabilize the tem-

perature, we use the differential analog output from the TRMC2 and a homemade

PID box [79]. The former essentially gives us a voltage proportional to the difference

between the setup temperature and the real temperature readout, while the latter

stabilizes the temperature accordingly by sending a current into the mixing chamber

heater.

For the thermopower measurements and the spin transport measurements de-

scribed in Chapter 5 were performed in a closed cycle 3He refrigerator25 with a base

temperature of 260 mK. This system has a two-axis magnet26, which can generate

a 1 T transverse field and a 3 T axial field simultaneously. Again, a 1 kΩ RuO2

thermometer has been used to monitor the temperature, which is read out by a

homemade temperature bridge [78] and stabilized by a second homemade PID box.

For the homemade electronics mentioned above and other related homemade devices,

the circuit diagrams can be found in Ref. [78], [79] and [80].

3.2.2. Magnetic field control

A magnetic field is normally applied onto our samples by sending a current into the

superconducting magnet coil. The current is provided by one of three power supplies:

for a high magnetic field, we use a 120 A bipolar superconducting magnet supply

from Lakeshore27; for medium magnetic fields, a 20 A Kepco bipolar operational

24From AIR LIQUIDE.
25Janis Research Company, Inc..
26From Cryomagnetics, Inc..
27Lakeshore 622, from Lake Shore Cryotronics, Inc..



74

power supply28 has been used; for very small magnetic fields, a 1 A Kepco bipolar

operational power supply29 is preferred.

The magnetic field can also be applied locally by fabricating a field coil on chip.

In fact, a field coil is simply a superconducting wire, which is properly designed and

deposited closely to the sample. By sending a current into the superconducting wire,

one can generate a magnetic field locally without inducing an appreciable heating

effect. Figure 3.8 shows a device with two such field coils, by which one can easily

control the local magnetic field in the center of each field coil by tuning the direction

and the magnitude of current in the coil. However, this design also has drawbacks:

(1) First, the induced local field cannot be very large. For the device shown in Fig.

3.8, passing a ∼ 69 µA dc current in the field coil can only generate 1 quantum flux

Φ0 = h/2e through one of the interferometer loops. (2) Second, the induced local

field is not homogeneous.

3.2.3. Low temperature measurements and electronics

The major technical concern in our experiments is always the noise issue, which needs

to be considered carefully at each stage of wiring and electronics setup.

3.2.3.1. Wiring

To fulfill the transport measurements, we need extend the electrical lines from the

sample holder to the electronics setup at room temperature. Cu twisted pairs are

used in the first stage, from the sample holder to the mixing chamber of the dilution

refrigerator or the 3He pot of the 3He refrigerator. These wires have been thermally

28Kepco Bop 20-20M, from Kepco, Inc..
29Kepco Bop 100-1M, from Kepco, Inc..
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Figure 3.8. SEM image of a device with two field coils patterned on
it. By sending a current into the field coils, one can generate magnetic
fields locally in the center of the coils.

sunk by winding around a Cu rod mounted on the mixing chamber or the 3He pot.

In the second stage, superconducting twisted pairs (NbTi in a CuNi matrix30, 0.004

inch in diameter) are used to extend the Cu twisted pairs to the top of the refriger-

ator. They are also thermally sunk at different temperature stages. On the top of

the refrigerator, each electrical line is filtered with a π-section filter31 with a cut-off

frequency of 5 MHz. These π-section filters are installed in a rf sealed and waterproof

metal box just after the vacuum seals, to minimize sample heating due to the ambient

radio-frequency (rf) sources.

30From Supercon, Inc..
31From Murata Electronics North America, Inc..
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Figure 3.9. Typical electronics setup used in our experiments.

3.2.3.2. Electronics setup

Figure 3.9 illustrates an example of the electronics setup used in our experiments. The

electrical lines coming from the π-section filters are first connected to a breakout box

inside a mumetal shielded box32, which is placed as closely as possible to the top of the

refrigerator to reduce interference and inadvertent heating from line frequency sources.

All the electronics that can be powered by batteries has been powered by batteries and

put into the mumetal shielded box. These electronics include a resistance bridge33,

step-up transformer34, instrumentation amplifier35 and current source. The resistance

32Homemade design, manufactured by Amuneal Manufacturing Corp..
33This is an Adler-Jackson type bridge [87], modified based on a General Radio 1433-X or 1433-F
bridge.
34From United Transformer Company.
35AD624, from Analog Devices.
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of the sample was typically measured by a conventional four-probe technique using an

ac resistance bridge with an excitation current generated by a lock-in amplifier (PAR

124)36. In order to increase the measurement sensitivity, the step-up transformer,

the instrumentation amplifier and the lock-in amplifier37 have been used in series

to amplify the signal out of the resistance bridge. The background noise from the

spectrum of the signal, as measured by a spectrum analyzer38 attached to the lock-in

amplifier, was approximately 6 nV/
√

Hz, close to the 4 nV/
√

Hz expected input noise

of the instrumentation amplifier, and showed an essentially flat frequency response

(with no peaks at the harmonics of the line frequency) up to the maximum frequency

of 100 kHz of the analyzer. In order to maximize the gain of the transformer, a

frequency of 10-130 Hz was used for the measurements. The analog dc output of the

lock-in amplifier is read by a HP multimeter39.

In addition, we often need to send a dc current into the sample during the mea-

surements. A homemade current source was designed to achieve this purpose, which

converts a voltage input to a current output ranging from a couple of nanoamps to

hundreds of microamps. The voltage input is normally generated by HP synthesizers40

sweeping at a frequency as low as 1 µHz. In this setup, the current is introduced at

the I+ contact, while the I− contact is grounded. However, in some special conditions

such as in some non-local resistance measurements, the I− contact is not preferable as

a ground, so that a floating current source is required. A simple schematic is shown in

Fig. 3.10(a) to demonstrate the basic idea of the non-local resistance measurements,

36From Princeton Applied Research.
37Model 116(A) differential preamplifier.
38SR760 FFT spectrum analyzer, from Stanford Research Systems.
39Model 34401A, from Hewlett Packard.
40Model 3325A, from Hewlett Packard.



78

(b)

Idc+Iac

Vac Synthesizer

I+
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I+ I−A
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10 kohm

current readout

(a)

Figure 3.10. (a) Schematic of the non-local resistance measurement,
where the ac voltage differential Vac is measured across the segment of
the sample which is not on the path of the ac excitation current Iac.
In order to obtain better signal-to-noise ratio, the grounding point is
set in the middle of the device (point A). (b) Schematic of the floating
current source, where I− is not the grounding point. Note that the
value of resistance can be modified depending on the measurement con-
ditions.

where the ac voltage differential Vac is measured across the segment of the sample

which is not on the path of the ac excitation current Iac. In this configuration, Vac

is superposed on VA, the voltage at the joint point A. A typical example of such

non-local resistance measurements is the thermopower measurements, in which the

amplitude of Vac is normally much smaller than VA if we ground the device at I−.

Hence, in order to obtain better signal-to-noise ratio, the grounding point needs to

be set at point A. Since the sum of the resistance of our sample and the wiring is

typically below 200 Ω at low temperatures, a floating current source can be fulfilled

simply by a couple of resistors. Figure 3.10(b) is the schematic of such a floating

current source, where I− is not the grounding point. The dc current through the

sample can be read out by the voltage across the 10 kΩ resistor by a HP multimeter.
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The HP multimeters are connected to a HP-IB extender41, which sends the

readings of the multimeters to a second HP-IB extender connected to a PC computer,

but cuts off the grounding link between them to avoid the noise from the PC computer.

The data acquisition is performed by a Windows-interfaced program written by Prof.

Chandrasekhar. This program is capable of reading and program controlling the

devices through the GPIB connections.

3.2.3.3. ac lock-in techniques: dV/dI and d2V/dI2 measurements

Measuring the differential resistance dV/dI at zero and finite bias is the basic opera-

tion in our work. A conventional four-probe technique using an ac resistance bridge

and a PAR 124 lock-in amplifier has been performed in our experiments. The de-

tailed description of such operations has been presented in the thesis work of former

graduate students [78, 79, 80].

In this section, we will focus on the second derivative technique42 used in the

thermopower measurements. In these measurements, an ac excitation current with a

frequency of f was sent into the sample, while d2V/dI2 is determined by measuring

the ac voltage drop at a frequency of 2f and a phase of 90◦. As shown in Fig. 3.11,

this method requires two PAR 124 lock-in amplifiers. The operation procedure is the

following.

(1) Set the sinusoidal oscillator of the No. 1 lock-in amplifier at a frequency of f ,

and use the conventional four-probe technique to measure the first derivative

signal, dV/dI. Tune the phase of the oscillator accordingly.

41Model 37204, from Hewlett Packard.
42It actually can measure the first derivative dV/dI at the same time.
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Figure 3.11. Schematic of the second derivative technique, which re-
quires two Par 124 lock-in amplifiers. One sends an ac excitation cur-
rent with a frequency of f , another picks up the corresponding ac volt-
age drop at a frequency of 2f and a phase of 90◦.

(2) Use the No. 1 lock-in amplifier as the external reference (ext. f/2 mode) of

the No. 2 lock-in amplifier, and synchronize the signal channel frequency of

the No. 2 lock-in amplifier to 2f .

(3) Send an excitation current with a frequency of f from the No. 1 lock-in

amplifier into the sample through the ac resistance bridge. Take the ac

voltage drop of interest to the input of the No. 2 lock-in amplifier and phase

it accordingly. Measure d2V/dI2 at a frequency of 2f and a phase of 90◦.

Meanwhile, if we split the ac voltage drop and send it to the No. 1 lock-in

amplifier, we would obtain dV/dI simultaneously.

Mathematically, the second derivative technique can be understood as follows.

V (I) = V (Idc + I◦sinωt)

≈ V (Idc) +
∂V

∂I
I◦sinωt +

1

4

∂2V

∂I2
I2
◦ (1 − cos2ωt). (3.1)
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Hence, by picking up the signal at a frequency of 2f and a phase of 90◦, we essentially

get (I2
◦/4)(∂2V/∂I2). The detailed application of the second derivative technique will

be described in the next chapter.

To conclude this section, we would like to address that our experiments are

extremely sensitive to noise. Even a tiny ground loop may cause an appreciable effect

which could bury the measurement signals. Thus, we normally continuously monitor

the noise of the system in the frequency range of 0-100 kHz by using a SR760 FFT

spectrum analyzer, and record it before each set of measurements.



CHAPTER 4

Experimental results: Thermal conductance and

thermopower of Andreev interferometers

In principle, thermal and thermoelectric measurements are trivial. First of all,

we need to heat up one end of the sample and measure the temperature differential ∆T

across it. Then, for the thermal conductance measurement, we measure the thermal

current IT through the sample and calculate the thermal conductance by the ratio of

IT to ∆T (i.e., GT = IT /∆T ); for the thermopower measurement, we measure the

thermoelectric voltage Vth across the sample and calculate the thermopower by the

ratio of Vth to ∆T (i.e., S = Vth/∆T ).

In practice, thermal transport measurements are more complicated than elec-

trical transport measurements. Thermal transport measurements require a well de-

fined thermal current path and the ability to measure local electron temperatures. In

this chapter, we will first introduce the local thermometry technique used in our ex-

periments. Then we will describe the thermal conductance measurements of Andreev

interferometers and compare the experimental results with our numerical simulations.

Finally, we will discuss the recent studies of the symmetry of the thermopower oscil-

lations of Andreev interferometers with respect to the applied magnetic flux. This

experiment was performed in a device in which we can change the supercurrent dis-

tribution. We find that the thermopower can be either symmetric or anti-symmetric

in the same device depending on its supercurrent distribution.

82
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Additionally, it is important to note from the beginning that, in this chapter,

we study the electronic thermal properties of Andreev interferometers, in that the

temperature differential ∆T is generated and measured in the electron bath. In order

to do so, we perform the measurements at very low temperatures and take special

care in designing and fabricating the samples to eliminate the coupling between the

electrons and the phonons.

4.1. Local thermometry technique

4.1.1. Overview of local thermometry techniques

In our devices, we normally connect one end of the sample to a metallic wire, the so-

called heater. By sending a dc current through the heater, we can heat up this end of

the sample to a temperature higher than the substrate temperature Tb, while keeping

the substrate and other parts of the sample cold. The typical size of the heater is

∼ 0.7 − 1 µm wide and ∼ 20 − 25 µm long in our devices. In this configuration,

since the length of the heater L is much larger the electron-electron characteristic

scattering length le−e, the electrons in the heater would achieve local thermodynamic

equilibrium by energy exchange between electrons [88, 89], where le−e is given by

le−e =

[(√
2

kB

)

(

~

e

)2
Dw

TR�

]1/3

, (4.1)

here D is the electronic diffusion coefficient, w the width of the heater and R� the

sheet resistance of the heater. Applying the experimental parameters (D = 104 cm2/s

and R� = 0.335 Ω) into Eqn. (4.1), we get le−e = 4.7 µm at 100 mK, close to the

value in Ref. [89]. As the local electron temperature Te in the heater is higher than

Tb, a temperature gradient can be generated in the electron bath. Conventional low
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temperature thermometers cannot be used to make a direct measurement of Te on

mesoscopic samples, because their physical size is much larger than the sample of

interest. Hence, special thermometry techniques are needed on the submicron length

scale.

As pointed out by Prof. Olli V. Lounasmaa [90], in low temperature physics it

is important but difficult not only to reach the low temperature but also to measure

it. Recently, spurred by the interest in measuring thermal and thermoelectric prop-

erties of mesoscopic structures, local thermometry techniques are attracting much

more attention (see a review article: Ref. [90]). Taking advantage of modern nano-

lithography technology, these new thermometers are typically very small and their

thermal relaxation times are usually short. They are designed to have good thermal

coupling to the electron bath, but only allow a very tiny amounts of self-heating.

These thermometers can be broadly divided into three categories.

(1) Coulomb blockade thermometry (CBT): The CBT has been studied exten-

sively [91, 92, 93, 94, 95] and developed into a commercial product in the

last decade. It operates in a temperature regime where the thermal energy

kBT is larger than the charging energy Ec of the single electron tunneling

device. Due to the competition between the thermal energy kBT , the electro-

static energy eV and the charging energy Ec, the dI/dV vs. V characteristics

of the CBT show strong temperature dependence at a temperature as low

as a few tens of millikelvin. In particular, the Coulomb blockade effect is

illustrated as a dip in the dI/dV vs. V curve and the full width of this dip

at the half minimum is approximately proportional to the temperature T ,

which allows the CBT to work as a primary thermometer.
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(2) Noise thermometry: It has been almost 80 years since Johnson noise SI(T ) =

4kBT/R was exploited in thermometry. More recently, shot noise SI(T ) =

2eIcoth(eV/2kBT ), which is essentially the second moment in the full count-

ing statistics [96], also has been used to determine the electron temperature

of normal metal systems [97]. As with the CBT, this type of thermometry is

a primary thermometer; but beyond the CBT, it operates in a temperature

regime of over four orders of magnitude, in the range of dilution refriger-

ator temperature to room temperature. However, this technique imposes

restrictive constraints on the design of the samples. For example, noise mea-

surements typically have a cutoff sensitivity below which the measurement

accuracy drops. Henny et al. [98] mentioned a cutoff at a value of 2×10−20

V2s, which requires a minimum thermometer resistance of 3.6 kΩ at 100

mK. Superconducting quantum interference devices (SQUIDs) can increase

the sensitivity of noise measurements, but need relatively complicated cir-

cuits and sample fabrication [97, 99, 100].

(3) Thermometry based on hybrid junctions: In this category are included the

local thermometry technique used in our thermal conductance and ther-

mopower measurements of Andreev interferometers. The advantage of our

thermometers is that they are well coupled to the electron bath and have

relatively high sensitivity, but require minimum fabrication and electronics

to read out the temperature. Particularly, our thermometers can also be

easily integrated into complex samples, which cannot be said of all the other
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thermometers. The earlier version of our thermometer is based on the su-

perconducting proximity effect [101], in which the resistance of a proximity-

coupled normal metal shows a temperature dependence at a temperature

below the transition temperature Tc of the superconductor. The overall re-

sistance change of this thermometer is ∼ 1-5% of the normal state resistance

(measured at a temperature just above Tc) and can be used to determine

the electron temperature over a 100 nm size scale. However, unfortunately,

a 5% resistance change cannot always give one enough sensitivity to pre-

cisely measure a small temperature differential across a sample. Therefore,

more recently, we developed a more sensitive thermometer based on the re-

sistance of a SNS junction device that shows a much stronger temperature

dependence at low temperatures [102]. The overall thermometer resistance

change, from 18 mK to ∼ 350 mK, is up to 102% of the normal state resis-

tance, and consequently, this thermometer is almost two orders of magnitude

more sensitive than that of Ref. [101].

Another type of thermometer in this category is the tunnel junction ther-

mometer, where an insulating layer is sandwiched between two different con-

ductors. A typical example of it is the SIN tunnel junction thermometer,

where SIN stands for the superconductor/insulator/normal-metal junction.

As with our SNS junction, the current-voltage (I − V ) characteristics of the

SIN tunnel junction thermometer usually strongly depend on the temper-

ature, which enable it to work as a thermometer as well [103, 104, 105].

Note that this type of thermometer is an alternate candidate for our thermal

transport measurements.
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4.1.2. Local thermometry technique based on proximity-coupled SNS de-

vices

Figure 4.1(a) shows a SEM image of the “parallelogram” Andreev interferometer

fabricated for thermal conductance measurements. This device was patterned using

conventional multilevel e-beam lithography1. A 46-nm-thick Au film (brighter regions

in the image) was deposited first. A 76-nm-thick Al film (darker regions) was then

deposited on top of the Au film in another level of lithography, after an in situ Ar+

plasma etching was used to increase the transparency of the NS (Au/Al) interfaces.

As shown in Fig. 4.1(a), this device can be divided into four sections: (1) The “Hot”

section, on the left, consists of a heater and a “Hot” thermometer. By passing a

dc current through the heater, one can increase the electron temperature Te of this

section above the substrate temperature Tb. (2) The “Cold” section, on the right,

includes a “Cold” thermometer and a large normal metal pad as a reservoir. (3) The

sample section consists of the structures between the “Hot” and “Cold” sections. As

shown in Fig. 4.1(b), the sample is essentially a “parallelogram” Andreev interferome-

ter. Since the “Hot” and “Cold” sections are at different temperatures, a temperature

gradient is generated across the sample. The exact value of the temperature differ-

ential can be accurately controlled by the dc current through the heater. (4) The

last section is a single thermometer electrically isolated from the rest of the sample,

which measures the temperature of the substrate. This “Sub” thermometer can be

used to monitor the heat leak from the heater to the substrate by electron-phonon

scattering.

1This sample was fabricated on a Si wafer covered with a 30 nm Si2O3 layer.
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Figure 4.1. (a) SEM image of the “parallelogram” Andreev interferome-
ter patterned for the thermal conductance measurements. The brighter
regions are composed of normal metal (Au), while the darker regions are
superconductor (Al). The device consists of three thermometers. The
one coupled to the heater is labeled “Hot” (length: 0.95 µm, width:
0.13 µm); the one away from the heater on the right side is labeled
“Cold” (length: 0.67 µm, width: 0.13 µm); the one on the substrate
is labeled “Sub” (length: 0.91 µm, width: 0.12 µm). (b) Zoomed-in
image of the “parallelogram” Andreev interferometer.
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All these three thermometers (shown in Fig. 4.1(a)) have similar structure:

a short normal metal wire with four superconducting probes. These superconduct-

ing probes are designed to be close to each other to increase the Josephson coupling

between them, but not close enough to cause a supercurrent flow in the entire ther-

mometer, as this would effectively short the resistance of the normal metal wire,

and defeat its use as a thermometer. Additionally, a superconductor is a very poor

thermal conductor at temperatures well below Tc. Hence, as supported by numerical

simulations, the use of the superconductor can ensure a uniform temperature distrib-

ution along the thermometer and eliminate the heat leak from the sample through the

probes of the thermometer. Using this type of thermometer, one would not disturb

the electron temperature profile of the sample we measured. Furthermore, it also

needs to be pointed out that since the thermometers were patterned in the same step

of lithography as other parts of the device, good coupling between the thermometers

and the electron bath of the sample is automatically ensured.

As with other resistance thermometers, our thermometer is also a secondary

thermometer, which needs to be calibrated before using it. The calibration procedure

is as follows [101, 102]: (1) First of all, we use the conventional four-probe technique

to measure the resistance of the thermometer as a function of the temperature of

the dilution refrigerator mixing chamber, with no dc current through the heater2.

The temperature of the dilution refrigerator is determined by a RuO2 thermometer

mounted on the mixing chamber. This temperature dependence is plotted in Fig.

4.2(a) for all three thermometers shown in Fig. 4.1(a). The normal state resistance Rn

of these three thermometers are 4.08 Ω (“Hot”), 4.19 Ω (“Cold”) and 5.28 Ω (“Sub”)

2Although there is no dc current, we still attach the current source to the heater (but set the output
to zero), in order to keep the same wire configuration during the entire calibration procedure.
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Figure 4.2. (a) Normalized resistance of the “Hot”, “Cold” and “Sub”
thermometers as a function of the temperature. (b) Normalized resis-
tance of the three thermometers as a function of the dc current through
the heater at the substrate temperature Tb = 49.5 mK. (c) Local elec-
tron temperature Te of the “Hot” and “Cold” thermometers and the
corresponding temperature gradient ∆Te across the sample as a func-
tion of heater power Ph at the substrate temperature Tb = 49.5 mK.
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respectively. (2) In the next step, we fix the temperature of the dilution refrigerator

and measure the resistance of these three thermometers as a function of the dc current

Ih through the heater (shown in Fig. 4.2(b)). (3) We then numerically cross-correlate

the data in Figs. 4.2(a) and 4.2(b), to obtain the local electron temperature Te as

a function of Ih. To be specific, we first replot the temperature dependence of the

thermometer resistance (Fig. 4.2(a)) in a form of T vs. R, and the heater current

dependence (Fig. 4.2(b)) as Ih vs. R. We then generate a series of R with equal

spacing and interpolate it into the T vs. R curve and the Ih vs. R curve, to obtain

the corresponding T and Ih, and plot them as Te vs. Ih, here we use Te instead

of T to denote the temperature of electrons. The resulting Te for the “Hot” and

“Cold” thermometers and the corresponding temperature differential ∆Te are shown

in Fig. 4.2(c), expressed as a function of the power of the heater Ph=I2
hRh. Figure

4.2(c) shows that a significant fraction of the power generated in the heater flows

through the sample, because Te in both thermometers increases substantially when

we increase the heater power, while the electron temperature differential ∆Te increases

only gradually.

The working regime of the thermometers is the low temperature regime3, ex-

tending from the base temperature of the dilution refrigerator up to temperatures

of 300-350 mK. As illustrated in Fig. 4.2(a), all three thermometers show strong

temperature dependence in this regime. The changes are 32%, 96% and 102% for

the “Hot”, “Cold” and “Sub” thermometers respectively, much larger than can be

expected from the decrease of resistance due to the proximity effect (∼ 10% for trans-

parent NS interfaces). We interpret this strong resistance change as associated with

3This range can easily be increased by using a superconductor with a higher Tc, or modifying the
distance between the superconducting probes as discussed below.
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Josephson coupling between the pairs of superconducting probes on either end of

the thermometers [106, 107] (i.e., between I+ and V+ or I− and V−). Due to this

coupling, the resistance of those parts of the thermometers near the superconducting

probes drops significantly, but the entire thermometer does not go superconducting,

since the distance between superconducting probes on opposite ends of thermometer

is too large for significant Josephson coupling to occur between them in our mea-

surement temperature range. Since the temperature range where Josephson coupling

in a SNS junction is determined by the correlation energy Ec = ~D/L2, where D is

the electronic diffusion coefficient in the normal metal, and L the distance between

the two NS interfaces [6], the above picture can easily be checked: Taking, as an

example, the “Cold” thermometer, with the measured value of D = 104 cm2/sec, and

L = 0.485 µm between the nearest pair of probes (I+ and V+), the temperature below

which Josephson coupling should become significant is Ec/kB ' 336 mK, which is

in good agreement with the experimentally observed value of ∼ 350 mK where the

resistance starts to drop rapidly (see Fig. 4.2(a)). We also note that, if we take

L = 1.15 µm the distance between the superconducting probes on opposite sides of

the thermometer (I+ and I−), we get Ec/kB ' 60 mK. Below this temperature, the

Josephson coupling between the superconducting probes would be appreciable and

the supercurrent in between would increase exponentially. Eventually, the resistance

of the thermometer would vanish because the supercurrent would short the entire

thermometer. However, at the base temperature 20 mK of the dilution refrigerator,

we still observed non-zero resistance for all three thermometers. This may indicate

that, in spite of our best efforts to shield all sources of extrinsic noise, there may still
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be some noise coupled to the sample, which suppresses the supercurrent across the

thermometers.

In addition, the resistance of the thermometers is strongly dependent on the ac

excitation current used in the four-probe resistance measurements, which is another

signature of the presence of Josephson coupling. Again, we use the “Cold” thermome-

ter as an example. Figure 4.3(a) demonstrates the temperature dependent resistance

R/Rn(T ) of the “Cold” thermometer taken with different values of the ac excitation

current. As the ac excitation current is increased from 10 nA to 200 nA, the overall

change in resistance from the base temperature to approximately 350 mK reduces

substantially. Since there is essentially no difference between the 20 nA curve and

the 10 nA curve, we assume 20 nA current would neither suppress the supercurrent

nor create any self-heating problem.

The third signature of the presence of Josephson coupling is that the differential

resistance dV/dI of the thermometers as a function of the dc current I through it is

strongly reminiscent of the differential resistance of a SNS junction, except that the

differential resistance at I = 0 is not zero. Figure 4.3(b) shows the current-voltage

(I − V ) curve of the “Cold” thermometer, obtained by integrating the dV/dI vs. I

curve after the I = 0 value of the differential resistance was subtracted. The overall

shape of this I−V curve is very much like the I−V characteristic for a SNS junction.

Extrapolation of the high current part of the curve gives a critical current of Ic ' 40

nA.

We also notice that, in the temperature regime from ∼ 350 mK up to Tc, the

resistance of all the thermometers increases as the temperature decreases below Tc.

Although this behavior is opposite to the result of proximity effect, similar behavior
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Figure 4.3. Characteristics of the “Cold” thermometer: (a) Normalized
resistance of the “Cold” thermometer as a function of the temperature
taken with different values of the ac excitation current. (b) I−V curve
of the “Cold” thermometer at the substrate temperature Tb = 17.6 mK,
obtained by integrating the dV/dI vs. I curve after the I = 0 value of
the differential resistance was subtracted.
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has also been observed before in proximity-coupled devices [5, 108, 109, 110], and

was interpreted as arising from current redistribution in samples with a four-probe

configuration, where the width of the sample is of the same order as its length, as

the sample is cooled below Tc. Our thermometers can also work in this temperature

regime, but with less sensitivity compared with the low temperature regime.

Furthermore, it also needs to be pointed out that the “Sub” thermometer

resistance shown in Fig. 4.2(b) has a very weak dependence on Ih at low values of

Ih. Particularly, as Ih ≤ 1 µA, the “Sub” thermometer basically shows no responses,

but the “Hot” thermometer reaches Th ∼ 140 mK at Ih = 1 µA (Tb = 49.5 mK).

This behavior demonstrates that the heat leak (due to electron-phonon interactions)

from the electron bath to the substrate is very small in the low temperature regime.

Finally, note that this device was patterned onto an oxidized Si substrate. For the

samples fabricated later on top of 50 nm thick Si3N4 membranes, we would expect

the heat leak to be even less.

4.2. Thermal conductance of Andreev interferometers

The ability to measure small temperature differences in the electron temper-

ature opens up the possibility of quantitatively measuring the thermal properties of

mesoscopic samples. In this section, I will focus on the thermal conductance mea-

surements of Andreev interferometers.

In the sample of Fig. 4.1, since we already know the temperature differential

∆Te across the Andreev interferometer (see Fig. 4.2(c)), if we have a way of de-

termining the heat current through it, we then can obtain its thermal conductance

(GT = IT /∆Te). In this sample configuration, the electrical connections from the
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heater line and thermometers extending out to the outside patterns are all designed

to be superconducting. Since, at temperatures well below Tc, the thermal conduc-

tance of superconductor is very small, these superconducting connections essentially

block the heat transport from the device to its surroundings. Hence, most of the

power Ph generated in the heater flows out only through the Andreev interferometer.

In addition, as noted in the previous section, the heat conduction due to phonons

is also negligible at a temperature below 140 mK. The heat flow IT through the

Andreev interferometer can therefore be determined by simply measuring the resis-

tance of the heater Rh and using Ph = I2
hRh. The thermal conductance is then

GT ≡ IT /∆Te = Ph/∆Te.

4.2.1. Earlier work in measuring the thermal conductance of Andreev in-

terferometers

Thermal conductance measurements on Andreev interferometers were first performed

by Dikin et al. in our group at the base temperature of the 3He refrigerator (Tb = 280

mK) [13]. The configuration of the Andreev interferometer measured there is similar

to the one shown in Fig. 4.1, except that it has two short superconducting arms in

the path of the thermal current. Figure 4.4 represents the main results of Dikin’s

measurement. First, Fig. 4.4(a) shows the local electron temperature (Th and Tc)

measured by the “Hot” and “Cold” thermometers and the corresponding temperature

differential ∆Te = Th − Tc as a function of the heater power P at Tb = 280 mK.

Compared with Fig. 4.2(c), we note that the “Cold” thermometer in this device

initially has no response with a small heater power (P < 3 pW), which suggests that

the heat flow may be interrupted in the low heater power regime.
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Figure 4.4. (a) Local electron temperature measured by the “Hot” and
“Cold” thermometers and the corresponding temperature differential
∆T as a function of the heater power P at Tb = 280 mK. (b) GT as a
function of the average temperature Tave = (Th + Tc)/2 of the Andreev
interferometer. (c) Open dots replot the low-power regime of (b) in a
semilogarithmic scale as a function of 1/Tave. Solid line is a fit to the
expected dependence for a superconductor. (Adapted from Ref. [13].)
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Second, the thermal conductance GT as a function of the average temperature

Tave = (Th + Tc)/2 of the Andreev interferometer is plotted in Fig. 4.4(b). One

can read out GT = 1.2 × 10−10 W/K in the limit of ∆Te = 0 at Tb = 280 mK. It

is instructive to calculate GT of an equivalent normal metal system4 by using the

Wiedemann-Franz law [11], GT = £0T/R, where £0 = π2/3e2 is the Lorenz number.

Thus, we get GT = 1.3×10−9 W/K, which is more than an order of magnitude higher

than the experimental result. As pointed out by Dikin et al. in Ref. [13], although

small deviations from the Wiedemann-Franz law at this temperature are expected,

the order of magnitude difference is unusual, which indicates that the presence of the

two superconductor arms in the path of the thermal current has a substantial effect

on GT .

Third, motivated by the above discussions, Dikin et al. treat the portion of

the normal metal underneath the NS interfaces as superconductor, and replot the

low-power regime of Fig. 4.4(b) but as a function of 1/Tave (see Fig. 4.4(c)). They

then fit the data to the formula for thermal conductance of a superconductor [66]

GT
S ≈ GT

S

6

π2

(

∆

kBT

)2

e−∆/kBT , (4.2)

where GT
N is the thermal conductance in the normal state. The fitting is reasonably

close to the real data and gives us a superconducting gap ∆ = 200 µeV, which is

comparable with the value ∆ = 183 µeV obtained from the measured Tc of the Al.

Consequently, based upon the above three aspects of the data, we can conclude

that the measured suppression of GT in Ref. [13] is due to the well-known suppression

of thermal conductance in a superconductor. Furthermore, in Ref. [14], Bezuglyi

4An Au wire of the same dimensions as in the Andreev interferometer, but without the Al loop.
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and Vinokur calculate GT of a NSN sandwich-like structure, similar to the sample

measured by Dikin. Their simulations indeed show that a large suppression in GT is

expected at higher temperatures due to the presence of the superconductor.

4.2.2. Quantitative measurements of the thermal resistance of Andreev

interferometers in the true proximity regime

Prompted by Dikin’s experiment, we quantitatively measured the temperature and

magnetic field dependence of the thermal resistance RT of the “house” and “ paral-

lelogram” Andreev interferometers in the true proximity regime. Note that, in this

section, we will use the phrase thermal resistance (RT = 1/GT ) instead of thermal

conductance in order to have a better presentation of the data and easier connection

with the results of the electrical resistance measurements.

4.2.2.1. Technical improvements

Compared with Dikin’s work, a couple of substantial modifications and technical

improvements have been done in our measurements. They are

(1) Design the samples in the true proximity regime. Since we believe that the

large suppression in GT in Dikin’s measurement is due to the superconducting

effect resulting from the two superconducting arms patterned in the path of

the thermal current, we have moved the NS interfaces away from the thermal

path in our new devices. The SEM image of the “parallelogram” Andreev

interferometer has been shown in Fig. 4.1; the “house” interferometer is

illustrated in Fig. 4.5.
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Figure 4.5. SEM image of the “house” Andreev interferometer. The
device consists of three parts: (1) On the left, a metallic heater line
with a thermometer. (2) On the right, a large normal-metal pad with
another thermometer. (3) In the middle, a “house” Andreev interfer-
ometer.

(2) Eliminate the heat leak from the electron bath to the substrate. As dis-

cussed previously that the electron-phonon scattering is not negligible at a

temperature above 200 mK [102]. In the present work, we measured RT at

lower temperatures, from 20 mK to 170 mK. In addition, our later samples

are fabricated on top of 50 nm thick Si3N4 membranes to minimize the heat

leak from the device to the substrate. Furthermore, RT is measured with

much lower thermal current through the sample, which is as low as 2.1 fW

compared in the present work with 455 fW in Ref. [13].

(3) Improve NS interface transparency. Since the magnitude of the proximity

effect strongly depends on the transparency of the NS interfaces, special care

has been taken in the sample fabrication process to reduce the NS interface

resistance. For samples patterned onto oxidized silicon substrates, in situ

Ar+ plasma etching is performed to clean the normal-metal surfaces prior to
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deposition of the superconductor. A specific interface resistance of 1.4-1.6

mΩ µm2 has been obtained. For samples fabricated on top of Si3N4 mem-

branes, however, since charge accumulation could blow out the structures on

the chip, we use external O2 plasma etching and achieve a specific interface

resistance of ∼ 17 mΩ µm2.

4.2.2.2. Temperature dependent thermal resistance of Andreev interfer-

ometers

In the above discussions, we have already described the way we measure the thermal

resistance RT of Andreev interferometer as a function of the heater power Ph, but

only at a fixed temperature of the refrigerator. In this section, we will repeat this

measurement at different temperatures to obtain the temperature dependence of RT .

Figures 4.6(a) and 4.6(b) show the thermal resistance RT of the “parallelo-

gram” and “house” interferometers as a function of the heater power Ph at six differ-

ent temperatures of the dilution refrigerator. As shown in Fig. 4.6, the qualitative

behavior of RT as a function of Ph is similar for the two configurations. In addition,

for both geometries, we find that RT is a strongly non-linear function of Ph at small

values of Ph. Experimentally speaking, to define the thermal resistance in the linear

response regime, RT should approach a limiting value as Ph → 0. However, it is

not the case in our experiments, in which RT continues to change as a function of

Ph even at a heater power of a few femtowatts. In particular, as shown in Fig. 4.7,

RT ∝
√

1/Ph at low values of Ph. This power law dependence of RT on Ph is found

to hold for all samples and at all temperatures measured. It is also consistent with

our numerical simulations for these devices based on the quasiclassical theory (see
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Figure 4.6. Thermal resistance RT as a function of the heater power
Ph at six different temperatures for (a) the “parallelogram” and (b) the
“house” interferometers.



103

Figure 4.7. RT vs. Ph at small values of Ph at six different temperatures
for (a) the “parallelogram” and (b) the “house” interferometers. The

solid lines are fits to the functional form RT ∝
√

1/Ph.
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Fig. 2.8 in Chapter 2), but for intermediate values of Ph. Following the discussions

in Chapter 2 and applying the experimental parameters (taking the “house” interfer-

ometer as an example, Tc = 1.2 K and RT
N = 0.01 K/pW from Fig. 4.6(b)), we find

that the theory predicts the linear response regime is approached only for Ph < 3

fW, comparable to the lowest power we applied in the heater. Note that 3 fW is one

order less than the lowest power we applied for the “parallelogram” interferometer.

Theoretically, of course, a linear response RT always can be defined. However,

the non-linear dependence of RT as a function of Ph curve in our measurements

creates a problem in experimentally defining the thermal resistance of the sample.

Given this problem, in the later discussion, we define the linear response thermal

resistance as the value of RT at the lowest heater power measured. This corresponds

to Ph = 31 fW for the “parallelogram” interferometer and Ph = 3.7 fW for the

“house” interferometer of Fig. 4.6 respectively. The resulting thermal resistance

as a function of the temperature for the two geometries is demonstrated in Fig.

4.8 (represented by solid symbols). At first sight, one may notice that the thermal

resistance RT of the “house” interferometer is about 4 times larger than that of the

“parallelogram” interferometer at low temperatures. However, it must be pointed out

that RT of the “parallelogram” interferometer was inferred at a heater power of 31

fW, compared with 3.7 fW for the “house” interferometer. If we extrapolate RT of

the “parallelogram” geometry to a value of 3.7 fW, we would get the same order of

magnitude of RT for both geometries.

In Fig. 4.8, except for the experimental results, we also show the expected

thermal resistance of equivalent normal-metal wires (solid lines), calculated by using

the Wiedemann-Franz law from the measured normal state resistance of the wires
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Figure 4.8. Thermal resistance (solid symbols) as a function of the tem-
perature for (a) the “parallelogram” and (b) the “house” interferome-
ters. The dotted lines are guides to the eye. The solid lines represent
the thermal resistance of equivalent normal-metal wires, estimated us-
ing the Wiedemann-Franz law, and the measured normal state elec-
trical resistance of the wires. The dashed lines represent theoretical
calculations of the thermal resistance of the interferometers, using the
experimental parameters for the samples.
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and the textbook value for the Lorenz number. We find that for both geometries, RT

increases rapidly with decreasing temperature. For the “house” interferometer, RT is

larger than the thermal resistance of an equivalent normal system by almost an order

of magnitude at the lowest temperature T ∼ 30 mK.

In addition, we calculate the thermal resistance of the Andreev interferometers

numerically as a function of the temperature, using the experimental parameters for

the samples. For the “house” interferometer, the distances from either side of the

sample and from the NS interfaces to the center node are (referring to Figs. 2.4(a)

and 4.5) L = 1.55 µm and L′ = 0.29 µm respectively. For the “parallelogram”

configuration, L = 1.19 µm, L′ = 0.24 µm, and L” = 0.76 µm (see Figs. 2.4(b) and

4.1). As predicted in Chapter 2, the thermal resistance of Andreev interferometers

increases monotonically as the temperature decreases below Tc, due to a decrease

in the DOS N(E) near the Fermi energy EF . However, unlike a superconductor,

N(E) of an Andreev interferometer does not go to zero as T → 0, but saturates at a

value that depends on the dimensions of the sample and the transparency of the NS

interfaces. As T → 0, N(E) is small but finite; the quasiparticles occupying the levels

in the pseudogap contribute to the thermal resistance, leading to an enhanced thermal

resistance, but one that still varies inversely with T according to the Wiedemann-

Franz law. From our numerical simulations (see Fig. 2.7), we notice that RT /RT
N

starts to deviate from its normal state value at a temperature of T ∼ 5Ec/kB and

approaches its saturation value below a temperature corresponding to approximately

0.1Ec/kB, where Ec = ~D/L2
0 is the correlation energy and L0 is the length from

one end of the interferometer to one of the NS interfaces. For the “parallelogram”

interferometer shown in Fig. 4.1, where the diffusion constant D = 127 cm2/sec



107

and L0 = 1.43 µm, we get 5Ec/kB ∼ 235 mK and 0.1Ec/kB ∼ 4.7 mK. Equivalent

parameters for the “house” interferometer are D = 208 cm2/sec and L0 = 1.84 µm,

coincidently giving similar temperatures of 5Ec/kB ∼ 235 mK and 0.1Ec/kB ∼ 4.7

mK. Notice that this saturation temperature is below the temperature range of the

experiments. The dashed lines in Fig. 4.8 show the calculated thermal resistance as

a function of the temperature for the “parallelogram” and “house” interferometers

respectively, with the parameters given above, and assuming perfectly transparent NS

interfaces. However, the theoretical predictions show significant deviations from the

normal state thermal resistance (calculated by using the Wiedemann-Franz law) only

at temperatures below 20-30 mK, while the experimental RT is already larger than

the normal state thermal resistance at temperatures about an order of magnitude

higher. Although we should not be surprised by this deviation, since the fits to the

temperature dependent electrical resistance by the quasiclassical theory are not very

successful either, we believe that this deviation might be associated with an intrinsic

mesoscopic effect not restricted to NS devices. In particular, it might be related

to the long length scales required to equilibrate the energy of the quasiparticles in

mesoscopic devices.

4.2.2.3. Phase dependent thermal resistance oscillations

As we know, the quasiparticles are phase coherent near the NS interfaces during the

process of Andreev reflection. Therefore, like the electrical resistance, the thermal

resistance of an Andreev interferometer is expected to oscillate periodically as a func-

tion of the external magnetic flux, with a fundamental period of one superconducting

flux quantum Φ0 = h/2e [14, 16]. Detailed simulations in Chapter 2 for both the
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“parallelogram” and the “house” interferometers show that the “house” geometry ac-

tually has a larger oscillation amplitude of the thermal resistance compared with the

“parallelogram” configuration, hence we focus on the former geometry in measuring

oscillations of RT . However, it turns out that measuring the phase dependent thermal

resistance oscillations is a difficult proposition. Ideally, to achieve our goal, we can

apply a temperature differential across the interferometer and measure the variations

in the temperature by the local electron thermometers as a function of the external

magnetic field. In reality, however, this method does not work in our experiments.

The reason can be understood by closely looking at the exact numbers in Fig. 4.6(b).

As shown in Fig. 4.6(b), at a heater power of 3.7 fW, the temperature differential

across the sample is ∆T = Th −Tc ∼ 0.52 mK. However, to resolve such a small tem-

perature change δ(∆T )(B), one would require an impractically long averaging time.

Of course, to increase δ(∆T )(B), one could apply a larger amount of power to the

heater, because ∆T ∝
√

Ph at low heater powers. But, the maximum variation in RT

would drop dramatically at larger values of Ph. Consequently, in order to measure

the variation of RT with respect to the external magnetic field B, we use the same

technique as for the temperature dependence: First, we fix the external magnetic

field B and measure the thermal resistance RT as a function of heater power Ph. We

then take the value at the lowest measured heater power as the value of RT at that

value of magnetic field B. Second, we bias the magnetic field to another value and

repeat the above measurements. The resulting RT vs. B curve is shown in Fig. 4.9

for a third Andreev interferometer device in the “house” configuration, where RT is

measured at T = 40 mK and Ph = 2.1 fW. For comparison, we also plot oscillations of

the resistance of the interferometer measured at T = 400 mK. The reason we choose
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this relatively high temperature is that at low temperatures, the R vs. T curve shows

hysteretic behavior with respect to magnetic field, due to the diamagnetic screening

of the supercurrent [111, 112]. At higher temperatures, the supercurrent is sup-

pressed, therefore the hysteresis disappears. For field dependent thermal resistance

measurements (at low temperatures), we first sweep the magnetic field to ∼ 3 G, and

then slowly decrease it to the desired value and fix it. After setting up the field, we

typically wait about 20-40 minutes, and then we start to calibrate the thermometers

and measure RT as a function of Ph, which would take about 5 hours. Hence, we

should not expect any hysteresis in our results. From Fig. 4.9, one can see that both

the electrical resistance R and the thermal resistance RT oscillates periodically with

the applied magnetic field B, with a period corresponding to one superconducting

flux quantum Φ0 = h/2e = 0.092 mT through the interferometer loop. In addition,

both oscillations have the same symmetry with respect to B. Since it is well-known

that R is symmetric with respect to B, RT is also symmetric with respect to B, as

predicted by theory [14, 16]. The offset seen in the data is due to the remanent

field in the external superconducting solenoid. Furthermore, we notice that there is

a π phase difference between these two oscillations. It is exactly what one expects,

because lower resistance means larger proximity effect (or more suppression in the

DOS, N(E)), resulting an enhancement in RT .

4.3. Symmetry of phase-coherent thermopower oscillations in Andreev

interferometers

Using the local thermometry technique, we also have been able to quantita-

tively measure the thermopower of Andreev interferometers. As defined earlier, the
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Figure 4.9. Thermal resistance oscillations of a “house” interferometer
(solid symbols) as a function of the externally applied magnetic field,
measured at T = 40 mK. The solid line is a guide to the eye. The dashed
line is the resistance oscillations of the same sample as a function of
the magnetic field at T = 400 mK.

thermopower is essentially the ratio of the thermal voltage Vth to the temperature

differential ∆T across the sample, under the condition that there is no electrical cur-

rent through the sample. Figure 4.10 shows the schematic of a device for measuring

the thermopower of a “parallelogram” interferometer, where the lighter area is nor-

mal metal (Au) and the darker area is superconductor (Al). Again, by passing a

dc current through the heater, a temperature differential ∆T is generated across the

interferometer. The local electron temperature of each side of the sample is then mea-

sured by the ‘Hot’ and ‘Cold’ thermometers, and the difference between them gives

∆T . As to the thermal voltage Vth, ideally, it should be measured by two probes

which are at the same temperature to avoid the thermopower contribution from the

probes. Hence, as shown in Fig. 4.10, an extra reference Au wire has been designed,
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Figure 4.10. Schematic of a device for measuring the thermopower of
a “parallelogram” Andreev interferometer, where the lighter area is
normal metal and the darker area is superconductor. During the mea-
surements, the local electron temperatures at the hot side (Th) and the
cold side (Tc) of the sample are measured by local electron thermome-
ters. The thermal voltage is measured using the probes labeled V1 and
V2, which are at the same temperature Tb, the substrate temperature.

and Vth is given by

Vth = V2 − V1 =

∫ Th(I)

Tc1(I)

SAdT +

∫ Tc2(I)

Th(I)

SNdT, (4.3)

where SA and SN are the thermopower of the Andreev interferometer and the reference

arm respectively.

As we mentioned in previous chapters, experimentally, the thermopower of

Andreev interferometers has been found to be a periodic function with respect to

the magnetic flux with a period corresponding to one superconducting flux quantum

Φ0 = h/2e through the loop of interferometer [17, 18, 19]. The most puzzling aspect

of the experimental results on Andreev interferometers is that the symmetry of the

thermopower oscillations with respect to the external magnetic field can be either
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symmetric or antisymmetric, depending on the geometry of the sample. In this thesis

work, the symmetry issue of the thermopower oscillations has been further studied,

focusing on the relation between the symmetry of the oscillations to the supercurrent

distribution in the device. Before we introduce our new experimental results, let us

first summarize the discoveries in the previous work.

4.3.1. Previous work

The symmetry of the thermopower oscillations in Andreev interferometers can be

summarized in Fig. 4.11, which is adapted from Ref. [17]. Figure 4.11(a) illustrates

the thermopower (solid line) and the resistance (dashed line) oscillations as a function

of magnetic field for the “house” Andreev interferometer; while Fig. 4.11(b) is for

the “parallelogram” configuration. For both sample geometries, the resistance oscil-

lates symmetrically with respect to the applied magnetic field. However, while the

thermopower oscillations for the “house” thermometer are symmetric with respect to

magnetic field, the oscillations for the “parallelogram” interferometer are antisym-

metric with respect to magnetic field. Since these initial experiments, our group has

measured a number of different sample topologies. All of these sample topologies,

except the “house” topology, show a thermopower that is antisymmetric with respect

to magnetic field. In spite of considerable theoretical efforts in recent several years

[20, 21, 22], this dependence of the symmetry of the thermopower oscillations on the

topology of the sample still remains an open and interesting question. The theoretical

studies suggest that the origin of the symmetry of the thermopower oscillations may

be associated with the conversion of the supercurrent to the quasiparticle current in

the devices.
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Figure 4.11. (a) Symmetric thermopower oscillations (solid line) as a
function of magnetic field for the “house” Andreev interferometer; (b)
Antisymmetric thermopower oscillations (solid line) as a function of
magnetic field for the “parallelogram” Andreev interferometer. In both
(a) and (b), the dashed line represents the resistance oscillations as a
function of magnetic field, which is always symmetric. (Adapted from
Ref. [17].)
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Figure 4.12. Schematic of the double-loop interferometer.

4.3.2. Thermopower measurements in a double-loop interferometer

In order to investigate the relation between the thermopower and the supercurrent

in Andreev interferometers, a double-loop interferometer has been designed so that

we can control the supercurrent distribution in the device. The schematic of the

device is shown in Fig. 4.12 and its SEM image has been shown in Fig. 3.8 in

Chapter 3. In Fig. 4.12, a double-loop interferometer is shown schematically to the

right of the heater, which is a metallic Au film of ∼ 25 µm long and ∼ 1 µm wide

in reality. The interferometer consists of an 8.5 µm long and 100 nm wide Au wire,

which is connected to the heater on one end, and a large area Au contact on the other

end. The thickness of the Au film is 50 nm. The Au wire is connected above and

below to two superconducting Al loops (100 nm thick). Around each interferometer

loop, a superconducting Al thin film field coil was fabricated. Magnetic flux could
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be generated and coupled into each interferometer loop by sending a dc current into

its field coil. Since the two field coils were separated by a distance of more than

30 µm, the cross-coupling between them is then negligible5. Although the magnetic

field generated by each field coil is not homogeneous across the area of the nearby

interferometer loop, we are still able to tune the direction and the magnitude of the

magnetic flux locally and separately in each loop. By varying the direction of the dc

current in the field coils, the flux coupled to both loops could be varied in phase, i.e.,

they are perpendicular to the plane of the substrate, and in the same direction; or out

of phase, i.e., they are perpendicular to the plane of the substrate, but in opposite

directions. To the left of the heater, a reference Au wire with the same dimensions as

the one in the interferometer was patterned. The thermal voltage Vth is then measured

between V2 and V1. From low temperature (300 mK) measurements, the resistivity

of the Au film was estimated to be ρAu ∼ 1.5 µΩcm, corresponding to a diffusion

constant of DAu ∼ 264 cm2/s. In order to ensure transparent NS interfaces, an in

situ Ar+ plasma etching was used to clean the Au surface before the Al deposition.

The transparency of the Au/Al interfaces was checked by an on-chip control sample,

which had a resistance of 0.14 Ω for a 0.01 µm2 area at room temperature.

In this experiment, since we only focus on the symmetry of the thermopower

oscillations with respect to the magnetic flux, but not the exact values of the ther-

mopower, we do not measure the electron temperatures using local electron ther-

mometers, as we have done in previous experiments. In Eqn. (4.3), because SN

is small and does not vary as a function of the magnetic flux, we can neglect its

5Calculation shows that when we apply one superconducting flux quantum Φ0 through one of the
interferometer loops by its field coil, only 0.1% Φ0 is generated in the opposite interferometer loop.
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contribution in our analysis. Hence, Eqn. (4.3) can be rewritten as

Vth =

∫ Th(I)

Tc1(I)

SAdT. (4.4)

In order to improve the measurement sensitivity, a non-local ac technique has been

used by applying an ac tickling current into the heater, and measuring the derivative

[17, 13]

dVth

dI
= SA

(

dTh(I)

dI
− dTc1(I)

dI

)

, (4.5)

in the linear response regime. As discussed in Chapter 3, in order to pick up the

signal dVth/dI in the measurements, a floating current source is required and the

grounding point should be in the center of the heater, close to the joint of the heater

to the interferometer. Unfortunately, we do not have a lead in this device for such a

ground. Alternatively, we use the second derivative technique developed in Ref. [18],

and measure
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where dTh(c)/dI = 0 at I = 0. This method actually can further improve the mea-

surement sensitivity. From the thermal conductance measurements, we know that

d2Th(c)/dI2 are always symmetric with respect to the magnetic flux, so that we can

obtain the symmetry of the thermopower oscillations directly from the symmetry of

the measured d2Vth/dI2.
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Figure 4.13. Preferred supercurrent distributions for (a) the in-phase
flux configuration and (b) the out-of-phase flux configuration.

The technical details relate to the second derivative measurements have been

described in Chapter 3. Particularly, in this experiment, an ac current I of rms

amplitude 5 µA with a frequency of f ∼ 43 Hz was sent into the heater, while

d2Vth/dI2 is determined by measuring the ac voltage drop between V2 and V1 at a

frequency of 2f and a phase of 90◦.

The magnetic flux is applied locally by sending a dc current in series into the

two field coils. As we have noted above, depending on the direction of the dc current,

the fluxes coupled to the two interferometer loops can either be in phase, or out of

phase. In the former case, assuming the device is perfectly symmetric, there will be no

supercurrent along the path of the thermal current, as the supercurrent contributions

from the two loops cancel each other, as shown in Fig. 4.13(a). The in-phase flux

configuration is therefore similar to the “house” geometry, in which no supercurrent

flows along the path of the thermal current. In the out-of-phase case (Fig. 4.13(b)),

the two supercurrent contributions add, leading to a supercurrent that is twice the

value for a single loop. Since the supercurrent flows along the path of the temperature

gradient, this configuration is similar to the “parallelogram” configuration.

Figure 4.14 shows the thermopower (solid line) and the resistance (dashed line)

oscillations of the double-loop interferometer as a function of the dc current through
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Figure 4.14. The thermopower (solid line) and the resistance (dashed
line) oscillations as a function of the dc current through the field coils,
calibrated in units of the number of flux quanta through one interferom-
eter loop: (a) the in-phase flux configuration and (b) the out-of-phase
flux configuration. The dotted lines in both (a) and (b) represent the
resistance oscillations measured as sending a dc current through only
one field coil. The thermopower is measured at T = 0.79 K; the resis-
tance is measured at T = 0.93 K.
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the field coils, calibrated in units of the number of flux quanta Φ0 through one inter-

ferometer loop, for the in-phase flux configuration (Fig. 4.14(a)) and the out-of-phase

flux configuration (Fig. 4.14(b)). We find that both the thermopower and the resis-

tance oscillate with respect to the applied magnetic flux, but with different symmetry

and waveform for the in-phase and out-of-phase flux configurations. In order to ex-

amine the exact symmetry of these oscillations, the resistance of the interferometer

is measured as a function of the dc current through only one field coil, because it is

always symmetric with respect to the magnetic flux. The resulting curves are shown

as the dotted lines in Figs. 4.14(a) and 4.14(b). It should also be pointed out that

there is a small offset in the magnetoresistance measurements, which is most likely

due to the Earth’s magnetic field, since the area of the interferometer loop is large.

Knowing that the area of one interferometer loop in this device is ∼ 287 µm2, we

estimate that B = 7.2 × 10−6 T corresponds to 1 superconducting flux quantum

through the loop. For this sample, the amplitude of the resistance oscillations was

only appreciable at higher temperatures, in the range of 0.75 to 1 K. It is consistent

with the fact that the amplitude of the resistance oscillations shows reentrant be-

havior as a function of the temperature when the temperature is on the scale of the

correlation temperature Ec = ~D/L2 [56, 62, 111]. At a temperature scale on the

order of 5Ec/kB, the amplitude of the oscillations reaches its maximum; otherwise,

below or above this scale, the amplitude decreases. Taking L = 500 nm as the length

between the NS interfaces in this device, Ec/kB ∼ 0.8 K, hence the amplitude of the

resistance oscillations decrease with decreasing temperature below this temperature

scale. For this reason, the magnetoresistance data shown in this paper were all taken

at a temperature of 0.93 K.
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The dashed curves in Figs. 4.14(a) and 4.14(b) show the resistance of the

double-loop interferometer as a function of the dc current applied through both field

coils, in the in-phase and out-of-phase flux configurations respectively. In both config-

urations, the resistance was found to be strongly hysteretic with magnetic flux. This

is consistent with the fact that, when the Josephson coupling between NS interfaces is

strong, the supercurrent screens the magnetic flux diamagnetically, so that the phase

difference between the NS interfaces is not directly given by the applied magnetic

flux [111, 112]. This effect depends on the self-inductance of the interferometer loop

and the temperature of the device. At low temperatures, the circulating supercurrent

becomes larger, therefore the hysteresis increases. Consequently, in Fig. 4.14, all the

data are plotted in the same direction of the sweep. The most interesting feature

of the resistance oscillations is in the out-of-phase flux configuration (Fig. 4.14(b)),

where two periods can be discerned clearly. One period corresponds to the one ob-

served with the field applied only through one field coil (and hence corresponds to

one superconducting flux quantum through only one loop); the second one, which has

smaller amplitude, has a period half of that, corresponding to one superconducting

flux quantum through both loops. In the in-phase case, only oscillations with period

corresponding to a flux through one loop are observed. At this point, we do not know

the exact nature of this difference. However, if we believe the Earth’s magnetic field

is indeed the reason causing the offset in the magnetic flux, it might be the possible

origin of this difference. In the in-phase case, the Earth’s magnetic field would apply

symmetrically to both interferometer loops. On the other hand, for the out-of-phase

flux configuration, it would have the opposite effect in each loop, which may cause

the doubled frequency in the magnetoresistance measurement.
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The solid lines in Figs. 4.14(a) and 4.14(b) show the thermopower oscillations

as a function of the magnetic flux for the in-phase (Fig. 4.14(a)) and out-of-phase

(Fig. 4.14(b)) flux configurations. As with the electrical resistance, the amplitude

of the thermopower oscillations decreased drastically at low temperatures, which im-

plies that the reentrance behavior in the thermopower measurements [17, 18] also

has an energy scale being set by Ec. Consequently, these thermopower data were

taken at a temperature of 0.79 K. Although the amplitudes of the thermopower os-

cillations in the two configurations are approximately the same, the waveforms are

quite different. In particular, the waveform of the out-of-phase flux configuration is

quite non-sinusoidal. In addition, comparing the thermopower curve to the resistance

curves, it can be seen that the thermopower oscillations in the in-phase flux config-

uration are symmetric with respect to the flux, while they are nearly antisymmetric

in the out-of-phase case. As we pointed out earlier, the in-phase flux configuration

is similar to the “house” interferometer, which also shows symmetric thermopower

oscillations; the out-of-phase flux configuration is more close to the “parallelogram”

interferometer, which shows an antisymmetric thermopower oscillations. Hence, the

thermopower measurements in the double-loop interferometer are consistent with the

previous results. At the end, it should be emphasized that these two symmetries

of the thermopower oscillations were taken from the same device, merely by chang-

ing how the flux (and hence the supercurrents) are distributed in the sample. This

is strong evidence that the symmetry of the thermopower is intimately related to

whether or not supercurrent flows along the path of the thermal current, i.e., related

to the conversion of the supercurrent to the quasiparticle current.



CHAPTER 5

Spin transport in ferromagnet/superconductor

heterostructures

During the last decade, ferromagnet/superconductor (FS) heterostructures

have been found to exhibit a wide variety of interesting properties. However, from

our point of view, this field is still much less explored compared with NS systems, and

the experimental work in this field is much behind the theoretical studies, especially

in diffusive systems where the experimental results so far are even contradictory. This

field involves tremendous amount of interesting physics, and by itself cannot be fully

covered in a thesis. Therefore, in this chapter, we are going to only touch a small por-

tion of it and extend our understanding regard to the spin-polarized electron transport

through FS interfaces and the superconducting proximity effect in ferromagnets.

5.1. Spin transport through FS interfaces

5.1.1. Differential resistance dV/dI of mesoscopic FS junctions

Recently, point contact Andreev reflection has become a common tool to quanti-

tatively determine the spin polarization P in ferromagnets [25, 26]. As one of

the most important fundamental parameters, the spin polarization is defined by

P ≡ (n↑ − n↓)/(n↑ + n↓), where n↑(↓) denote the densities of spin-up and spin-down

electrons respectively. In order to understand these point contact Andreev reflection

experiments, it would be very instructive to start from the NS case.
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On a microscopic level, the low temperature transport properties of NS in-

terface devices are related to the probability of Andreev reflection A(E)1, which is

essentially associated with the transparency of the NS interfaces. In the Blonder-

Tinkham-Klapwijk (BTK) theory [32], the interface transparency is characterized by

a dimensionless parameter Z: (1) When Z = 0, the NS interface is perfectly trans-

parent and A(E) = 1. Therefore, as one would expect, the conductance of the NS

interface increases by a factor of 2 from its normal state value for E < ∆. (2) When

Z > 0, both the interface transparency and the value of A(E) are reduced, so that

the conductance of the interface decreases as well. (3) When Z → ∞, the interface

approaches the tunneling barrier limit, where A(E) = 0 and the conductance of the

interface vanishes.

If the normal metal is replaced by a ferromagnet in the above picture, A(E)

would be reduced even for a perfectly transparent interface, due to the fact that not

all the quasiparticles of one spin orientation can find a partner with opposite spin

orientation to form a Cooper pair in the superconductor side. Particularly, in the

limit of P = 1 (100% spin polarization), A(E) = 0. In a typical point contact FS

spectroscopic measurement, the differential conductance dI/dV of a point contact

junction is first measured as a function of the applied voltage bias V . The measured

dI/dV vs. V curve is then fitted by the spin-polarized version of the BTK model for

obtaining quantitative estimates of P and Z.

In this section, we will introduce our measurements of low temperature differ-

ential resistance dV/dI of mesoscopic FS junctions. The samples we measured are

simple FS crosses (one sample image is shown in Fig. 5.1), fabricated by two-step

1Here E is the energy of a quasiparticle incident on the NS interface.
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Figure 5.1. SEM image of a FS cross. The leads used to measure the
four-terminal resistance are marked. The current leads were used to
send both the ac and dc current. Both Ni and permalloy (NiFe) were
used as the ferromagnet in our samples; only one sample image is shown
here.

e-beam lithography onto oxidized silicon substrates, with all the interfaces cleaned by

an in situ ac Ar+ plasma etching prior to deposition of the Al films to ensure highly

transparent interfaces. In the experiments, we measured the dV/dI of the FS inter-

faces as a function of the voltage bias V across them. As shown in Fig. 5.1, we use a

four-terminal configuration, and send a small (∼ 10 − 50 nA) ac current superposed

on a dc bias current. The voltage bias across the interface is obtained by numerically

integrating the dV/dI vs. I curve afterward. The measurements were performed at

the base temperature of 3He refrigerator (T = 290 mK) with conventional ac lock-in

amplifier techniques. During the measurements, we were able to apply a magnetic

field in the plane of the sample, aligned along the length of the ferromagnetic wire.
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The reasons for this kind of magnetic field setup are the following: first, this ori-

entation increases the critical field of the thin film superconductor by reducing the

cross-sectional area of the superconducting wire in the field; and second, the field is

aligned along the easy axis of the ferromagnet element to obtain relatively a uniform

magnetization.

Figure 5.2 shows the dV/dI vs. V measurements of a permalloy/Al (Py/Al)

cross2 at three different values of magnetic field H. There are a few features which are

particularly interesting in these measurements. (1) As H = 0 (Fig. 5.2(a)), when we

increase the voltage bias from |V | = 0 to either direction, the measured dV/dI first

increases and reaches a peak at a voltage of |V | ' 4 µV; then it starts to decrease and

show two dips before approaching its normal state resistance at higher values of V .

Comparing our experimental results with what are observed in the FS point contact

experiments, we notice that they are substantially different. For example: in the point

contact experiments, one would not see the multiple peak/dip structures, and dV/dI

would decrease rather than increase as one shifts away from |V | = 0. In addition,

as shown in Fig. 5.2(a), while the inner pair of dips in dV/dI are almost symmetric

with each other, the outer pair of dips are asymmetric, in that the amplitude of the

dips is different. (2) As an external magnetic field H is applied, although the height

of the peak in dV/dI remains almost same, the features of the two dips change very

differently. For the outer pair of dips, the left dip (at negative bias voltage V < 0),

shows a splitting as a function of magnetic field (a hint of splitting at H = 1002 G

and a clear splitting at H = 2005 G). Note that a negative bias voltage corresponds

to ejecting electrons from the Py side into the Al. As to the inner pair of dips, there

2This sample is similar to the one shown in Fig. 5.1, except that we use Py instead of Ni.
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Figure 5.2. Differential resistance dV/dI of a Py/Al cross at T = 290
mK: (a) H = 0 G, (b) H = 1002 G, and (c) H = 2005 G.
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is no sign of splitting. However, we also notice that the inner dips at H = 1002

G are much sharper than those at H = 0 G; and the inner dips at H = 2005 G

are only a little bit less sharper, which may be simply due to the suppression of the

superconducting gap at this field. One common theme of these peaks/dips is, as H

increases, the positions of the peaks/dips move down to lower values of |V |. (3) The

peak and dip features in the dV/dI measurements are all in the range3 of |V | < 10

µV at H = 0 G instead of ∼ 200 µV, the superconducting gap of Al obtained from

the low temperature transport measurements.

In order to understand the above experimental results, we have studied the

charge/spin transport across FS junctions in the framework of a spin-polarized BTK

model [25, 27]. Again, we start from the NS case, i.e., the conventional BTK model,

where the properties (I − V characteristics, etc.) of NS point contacts are studied

by solving the Bogoliubov-de Gennes equations of the transmission and reflection of

quasiparticles at the interfaces4 [32]. In this thesis, however, we would not present

the detailed derivation of the theory, just use the equation of the current INS across a

NS junction with a voltage bias of V as the starting point. In the conventional BTK

model, this current is given by

INS = 2N(0)evF S

∫ ∞

−∞

[f(E − eV ) − f(E)] [1 + A(E) − B(E)] dE, (5.1)

where N(0) is the density of states at the Fermi energy, vF is the Fermi velocity of

the electrons, S is the cross-sectional area of the interface, f is the Fermi distribution

3This range is sensitive to the thickness of the Al film and the area of the FS interface.
4Note that the BTK theory has proved to be valid for an interface with arbitrary barrier strength
ranging from the metallic limit to the tunnel junction.
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function, and A(E) and B(E) are the BTK coefficients that correspond to the proba-

bility for Andreev reflection and normal reflection of electrons from the NS interface.

As we mentioned before, the value of A(E) and B(E) vary as a function of the BTK

parameter Z. The exact expressions of A(E) and B(E) as a function of Z are listed

in Table II of Ref. [32].

To adapt the BTK theory for FS systems, it is necessary to understand the

differences between a NS and a FS structure in the process of Andreev reflection,

whereby a spin-up electron of energy E combines with another spin-down electron of

energy −E to form a Cooper pair in the superconductor. Unlike the NS case, not all

electrons which are incident on the FS interface can find complementary electrons of

opposite spin polarity to form a Cooper pair in a FS device with a finite polarization

P in ferromagnet, which results in a decrease in the probability of Andreev reflection

by a factor of (1-P ). Hence, in the FS case, we decompose the current into two parts

I = (1−P )Iu + PIp, where Iu is the unpolarized component of the current described

by the conventional BTK theory, and Ip the polarized component of the current which

are forbidden in the process of Andreev reflection. Correspondingly, the original BTK

coefficients A(E) and B(E) can also be divided into an unpolarized component (Au,

Bu) and a polarized component (Ap, Bp) with Ap = 0. Note that these modifications

on A and B are restricted by the requirement of current conservation through the

FS interface, and the exact expressions of Au, Bu and Bp are listed in Table I of Ref.
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[27]. Eqn. (5.1) can then be modified to

IFS = N(0)evF S

∫ ∞

−∞

[f(E − eV ) − f(E)]

{

(1 − P ) [1 + Au(E − gµH)− Bu(E − gµH)

+1 + Au(E + gµH) − Bu(E + gµH)]

+P [1 − Bp(E − gµH)]
}

dE,

(5.2)

where the energy contributions ±gµH come from Zeeman splitting of the supercon-

ducting quasiparticle density of states in the magnetic field. To be specific, in the

presence of magnetic field, the energy of quasiparticles with one spin polarity is raised

to E + gµH, while the energy of quasiparticles with opposite spin polarity is reduced

to E − gµH. For the quasiparticles with lower energy E − gµH, they can always

find a complementary partner with opposite spin, therefore they contribute to the

unpolarized component of the current Iu for which Andreev reflection is allowed. For

the quasiparticles with higher energy E + gµH, however, since Andreev reflection is

unfavorable, they are related to the polarized component of the current Ip.

Based on Eqn. (5.2), we calculate the normalized differential resistance of

a FS interface as a function of the voltage bias across it for a number of different

combinations of Z and P . Figure 5.3(a) shows the results of our calculations without

external magnetic field H = 0. For Z = 0 and P = 0, as we expected, we obtain

exactly the same result as the conventional BTK model, in that the zero bias resistance

of the interface is half of the normal state value. For Z = 0 and P = 0.5, only half

of the electrons can find a partner to form Cooper pairs, therefore the zero bias

resistance is the same as the normal state resistance. For Z = 0.5 and P = 0, we find
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Figure 5.3. Numerical calculations of the normalized differential resis-
tance of a FS interface as a function of the voltage bias across it, from
the theory described in the text. (a) H = 0, (b) H = 0.2∆. The values
for Z and P are noted in the figure, and the temperature is T = 0.05∆.
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that the zero bias resistance is slightly larger than the normal state resistance. This

behavior is associated with the suppression of Andreev reflection due to a non-perfect

interface. For Z = 0.5 and P = 0.5, the zero bias resistance rises well above the normal

state value. In short, our calculations basically show that the zero bias resistance is

sensitive to both Z and P , so that one cannot differentiate the contributions from

them independently by examining only the zero bias resistance. In order to obtain

both Z and P , the entire measured dV/dI vs. V curve needs to be fitted to Eqn.

(5.2), because Fig. 5.3(a) also show that Z and P affect the measured dV/dI in

different ways at higher bias. Figure 5.3(b) shows the results of our calculations with

an applied magnetic field H = 0.2∆. We notice that, except for the curve Z = 0 and

P = 0, other curves are significantly different from those at H = 0. The differences

are associated with the Zeeman splitting of the superconducting quasiparticle density

of states. In particular, we observe a splitting in the dip structures of dV/dI with a

substantial asymmetry near V ' ∆/e. The splitting can be seen even for the curves

of P = 0, but the asymmetry of the splitting only appears for P 6= 0.

Comparing the experimental results (Fig. 5.2) with the calculations (Fig. 5.3),

we note that there are some similarities, but substantial differences in even the quali-

tative behavior. In the following, we will discuss the major differences between them.

First, Fig. 5.3(b) indicates that, when we apply an external magnetic field,

the calculated differential resistance always decreases as the voltage bias is moved

from 0, except for the case Z = 0. However, the experimental data show an opposite

trend, i.e., the resistance invariably increases and forms a peak structure as one

increases the voltage bias across the interface (see Figs. 5.2(b) and 5.2(c), even in

Fig. 5.2(a)). In addition, this resistance peak is also confirmed in the temperature
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Figure 5.4. Normalized differential resistance of the Py/Al cross (the
same sample of Fig. 5.2) as a function of temperature.

dependent zero bias resistance measurement of the same sample, which is shown in

Fig. 5.4, where a large increase in resistance is seen at a temperature just below the

transition temperature of the superconductor (Al). This behavior can be understood

as the charge imbalance effect induced in the superconductor near the interface. We

will come back and discuss it in detail for FS structures in the next section.

Second, in Fig. 5.2(a), two sharp dips appear in the data. We now understand

that the outer pair of dips are related to similar dips seen in Fig. 5.3, because they

are asymmetric and split in an external magnetic field. In particular, the evolution of

the outer pair of dips as a function of the applied magnetic field in the experiments is

very close to the case Z = 0.5 and P = 0.5 in Fig. 5.3, since both show a dip splitting

at a negative voltage bias in an external magnetic field. However, different from the

calculated results, we observe asymmetric dips even at zero applied external field in
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the experiments. However, we should also point out that the field H can result from

a combination of the externally applied field and the self-field of the ferromagnet,

which can be substantial near the ferromagnet. Hence, the asymmetric dips at H = 0

may be due to the self-field of the ferromagnet. As for the inner pair of dips observed

in the experiments, at present, we do not know the origin of them. They might be

associated with the charge imbalance peaks in dV/dI.

Third, as mentioned above, theory predicts the dip features in the dV/dI vs.

V measurements to appear at V ≈ ∆/e (see Fig. 5.3). However, in the experiments

(shown in Fig. 5.2(a)), the positions of the outer dips are only at V ∼ 6 µV, much

less than 200 µV the estimated superconducting gap for Al. We believe this contra-

diction arises from the suppression of the superconducting gap due the presence of

the ferromagnet, i.e., the inverse proximity effect.

5.1.2. Charge imbalance effect in FS structures

The two-fluid model of superconductivity has been shown to be extremely valuable in

understanding many interesting phenomena of superconductivity, if one can separate

the contribution of the quasiparticle current from that of the supercurrent. Following

the same spirit, one can understand that when quasiparticles are injected into a su-

perconductor, it is also very useful to distinguish the quasiparticle chemical potential

µqp and the Cooper pair chemical potential µcp. Indeed, the relaxation length scale for

µqp and µcp are different in a superconductor near the NS or FS interfaces. The charge

imbalance then gives rise to the difference in µqp and µcp [9, 50]. Deep inside the

superconductor, both potentials are the same; near the interface, however, µcp rises

to its bulk value within a superconducting coherence length ξS of the interface, while
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µqp relaxes to µcp over a much longer length scale. This length scale is the so-called

charge imbalance length λQ∗, which can be many microns long in superconductors

such as Al [77, 113, 114], compared with ξS ∼ 190 nm in Al at low temperatures

[115].

Charge imbalance effects have been studied extensively in the 1970s and 1980s

[116, 117, 118, 119, 120]. In principle, the potentials µqp and µcp were detected

near a NS interface by using a normal-metal voltage probe and a superconducting

voltage probe respectively [117, 118]. In our devices, with the probe configuration

as shown in Fig. 5.1, we essentially measured µcp instead of µqp because the V− probe

is superconducting. Hence, we observed a resistance peak in the R vs. T curve at a

temperature just below Tc (as show in Fig. 5.4). It should also be pointed out that

this behavior is not restricted to FS devices; similar peaks have been observed in NS

devices as well [121]. In diffusive systems, λQ∗ =
√

DτQ∗, where τQ∗ is the charge

imbalance time. Near Tc, an expression for τQ∗ was given by Schmid and Schön [50]

τQ∗ =
4kBT

π∆(T, H)

√

τin

2Γ
, (5.3)

where ∆(T, H) is the temperature and magnetic field dependent superconducting gap,

τin is the inelastic scattering time, and the factor Γ is given by

Γ =
1

τs
+

1

2τin
, (5.4)

and τs gives the contribution from orbital pair breaking. Here we have neglected the

spatial variation of the superconducting gap and pair breaking due to the supercur-

rent. Then, an excess resistance would arise from the difference between µcp and µqp
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Figure 5.5. Normalized differential resistance of a Ni/Al interface as a
function of temperature. The solid line is measured with probe config-
uration similar to shown in Fig. 5.1, i.e., using an Al probe as V−; the
dashed line is measured using an Au probe close to interface as V−.

near the interface. Specifically, if a superconducting probe is placed a distance x

from the interface, the excess resistance ∆R will be measured as ∆R ≈ (λQ∗ − x)ρS ,

where ρS is the resistance per unit length of the superconductor. λQ∗ diverges when

∆ → 0, and this divergence gives rise to the peak seen in the temperature dependent

resistance measurements at a temperature just below Tc (shown in Fig. 5.4). The

solid line in Fig. 5.5 illustrates the differential resistance of a Ni/Al interface as a

function of temperature with probe configuration similar to shown in Fig. 5.1. An

enhancement in resistance has been observed in this measurement at a temperature

just below Tc as well. However, for this device, if we use a normal-metal (Au) probe

close to the interface as the V− probe in the four-terminal resistance measurement,

we get a different temperature dependence, the dashed line in Fig. 5.5, where no
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excess resistance is measured. It is clear evidence that the peak features seen in the

temperature dependence and the dV/dI vs. V measurements are associated with the

charge imbalance effect. In addition, one may also notice that, at T < 0.6 K in Fig.

5.5, both the solid and the dashed lines show the same trend, which we believe is

the intrinsic behavior of the interface, which does not depend on the measurement

probes.

5.1.3. Spin-polarized Andreev reflection in FS device

As pointed out above, the probability of Andreev reflection depends on both P and Z,

so that one cannot separate the their contributions only based on the measured zero

bias resistance of FS junctions. In order to do so, a new device has been designed,

where the polarization P of the “ferromagnet” can be varied. The schematic of this

device is shown in Fig. 5.6, in which the “ferromagnet” is actually a normal metal

(Cu) with a non-equilibrium magnetization injected from a real ferromagnet (Py).

During the measurements, to create a non-zero spin polarization in Cu, we inject

a spin-polarized current Isp from a nearby Py into it. The magnitude of the non-

equilibrium polarization in Cu depends on the magnitude of the injected current.

However, this effect only exists over a certain length scale, the so-called spin-flip

length λsf , which is ∼ 1 µm in Cu5 at a temperature of 4.2 K [122]. Beyond that,

the electrons injected from Py would lose their spin memory, and the injected current

would have equal number of spin-up and spin-down electrons. In practice, the distance

between the Cu/Al interface and the Py/Cu interface is ∼ 520 nm, hence the current

injected from Py would still carry a finite spin polarization at the Cu/Al interface.

5Cu was chosen in our device because it has a long spin-flip length.
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Figure 5.6. Schematic of the device for determining the dependence
of the spin-polarized Andreev reflection on the polarization P of the
“ferromagnet”, as described in the text.

Figure 5.7 shows the central results of this experiment, in which we measured

the differential resistance of the Cu/Al interface as a function of temperature with

different dc currents injected from Py into Cu. The interface resistance was measured

using conventional four-terminal technique with an excitation current Iac = 100 nA.

The dotted line in Fig. 5.7(a) plots the temperature dependence of the Cu/Al interface

resistance at Isp = 0, which is very similar to the results shown in Figs. 5.4 and 5.5. As

the temperature drops below Tc, the interface resistance increases abruptly, showing

a peak structure associated with the charge imbalance effect. When Isp 6= 0, however,

the overall shape of the R vs. T curve changes substantially as one increases |Isp| from

1 µA to 3 µA. One may notice that, as |Isp| increases, even the interface resistance at

the lowest temperature increases significantly. It indicates that the applied dc current

Isp may cause some heating effect in our device, which raises the interface resistance

and broadens the peak feature in the R vs. T curve. On the other hand, since the

current path for ±Isp is the same, effects due to Joule heating should also be the

same, so that any differences between them will be due to the spin-polarized current.
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Figure 5.7. (a) Differential resistance of the Cu/Al interface as a func-
tion of temperature with different dc currents injected from Py into Cu.
The dotted line shows the measurement at Isp = 0. At |Isp| 6= 0, for the
same magnitude of |Isp|, the solid lines illustrate the data of Isp > 0,
while the dashed lines represent the results with the injected currents
in opposite directions. (b) Difference between the curves in (a) with
the same magnitude of the injected currents but in opposite directions.
The solid line is at |Isp| = 1 µA, dashed line at |Isp| = 2 µA, and dotted
line at |Isp| = 3 µA.
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Note that a finite spin polarization only exists when Isp < 0, i.e., when an electron

current is injected from the ferromagnet to the normal metal. When Isp > 0, there

would be no spin polarization induced in the normal metal. In 5.7(a), for the same

magnitude of |Isp|, the solid lines illustrate the data of Isp > 0, while the dashed lines

represent the results with injected currents in opposite directions, i.e., Isp < 0. At

low temperatures, the dashed lines show larger resistance than the solid lines with the

same |Isp| but in different directions. It is exactly what one expects, because when

Isp < 0, the induced spin polarization in Cu would reduce the probability of Andreev

reflection, resulting in an increase in resistance. The difference between the spin-

polarized and spin-unpolarized cases is indeed measurable, and can be seen clearly

by taking the difference between the curves (solid and dashed lines in Fig. 5.7(a))

corresponding to the two current directions at each value of |Isp|. These data are

shown in Fig. 5.7(b), in which we only concentrate in the low temperature regime,

from the base temperature of 3He refrigerator to 650 mk, since the charge imbalance

effect dominates higher temperatures. We believe, in such a low temperature regime,

the differences shown in Fig. 5.7(b) are only related to the spin-polarized Andreev

reflection effect, instead of a charge imbalance phenomena induced by using Al as

the V− probe in the four-terminal measurements. As shown in Fig. 5.7(b), the solid

line plots the difference between the spin-polarized and spin-unpolarized cases at

|Isp| = 1, dashed line at |Isp| = 2, and dotted line at |Isp| = 3. Generally speaking, the

differences increase as one increases the induced spin polarization in Cu by increasing

|Isp|.

We should point out that this experiment is only a preliminary investigation

in topic of spin-polarized Andreev reflection. A measurable effect has been observed
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in the experiment, and it behaves in a way as we expected. In order to quantita-

tively study the dependence of the spin-polarized Andreev reflection on P , further

experiments need to be done.

5.2. Superconducting proximity effect in a ferromagnetic metal

In diffusive proximity-coupled normal-metal systems, as discussed in previous

chapters, the expected length scale of pair correlations induced by the superconductor

is the superconducting coherence length in the normal metal LT =
√

~D/kBT . For

typical metallic films, LT can be as long as 0.5 µm at T = 1 K. In a ferromagnet in

contact with a superconductor, however, the above length scale is not valid any more,

due to the presence of the strong exchange energy Eexc ∼ kBTCurie, where TCurie is the

Curie temperature of the ferromagnet. Taking the common ferromagnetic material

Ni as an example, the exchange energy is given by Eexc ∼ kB(630K), and the length

over which superconducting correlations are conventionally expected is determined

by the exchange length Lexc =
√

~D/Eexc, which is estimated to be on the order of

2-20 nm [123, 124].

Recently, this statement is challenged in a number of publications, in which

observations of a long-range superconducting proximity effect in a ferromagnet have

been reported [35, 36, 37, 38, 39, 40]. In Ref. [37], Lawrence and Giordano mea-

sured the resistance of narrow Ni wires with superconducting Sn contacts as a function

of temperature, and observed a significant resistance change at T < Tc. Based on

the amplitude of the resistance change, they estimated the distance of the supercon-

ducting correlations in the ferromagnet as 46 nm. Giroud et al. [38] studied the

temperature dependence of a Co ring in proximity to a superconducting Al pad. A
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non-monotonic behavior has been observed, which is similar to the reentrance behav-

ior seen in a NS system. The amplitude of the resistance change below Tc is < 1% of

the normal state resistance, comparing with 12−15% for an ideal NS system. Again,

from the size of this change, they estimated that the superconducting correlations

extended in a ferromagnet up to a distance of approximately 180 nm. More recently,

this problem has been reexamined by the same group, by measuring the temperature

dependence of a short Co wire in contact with a superconductor Al pad with highly

transparent interface [40]. A much larger proximity effect has been seen in these

devices with almost 12% decrease in resistance at low temperatures, but no evidence

of reentrant behavior. Petrashov et al. [39] also observed a giant proximity effect

in Ni wires connected with a superconducting Al reservoir. These samples showed

a decrease in resistance below the superconducting transition amounting to approxi-

mately 10−12%. They attributed this behavior to a proximity effect which extended

into the ferromagnet to a distance of 600 nm. In short, in the above experiments, the

measured extent of the superconducting correlations in a ferromagmet is much larger

than the exchange length Lexc.

In addition, the long-range superconducting proximity effect is also supported

by recent theoretical studies, where they show that the proximity effect may be still

appreciable in a ferromagnet within a length scale comparable to the superconduct-

ing coherence length LT , if the magnetization in the ferromagnet is spatially inho-

mogeneous [41, 42]. This long-range effect arises from the triplet component of the

superconducting correlations in the ferromagnet, rather than the singlet component

responsible for the conventional proximity effect in a normal metal. Although there
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is no experimental evidence to date to prove the existence of such a triplet prox-

imity effect, the experiments discussed above indeed point to this mechanism as an

possibility.

This problem has also attracted our interest and been explored experimen-

tally in our group. Aumentado et al. [125] measured the resistance of a Ni ellipse

in proximity to a superconductor (Al) pad as a function of temperature. The mea-

surement shows no evidence of a proximity effect in the ferromagnet, although the

Ni/Al interface resistance indeed shows a strong temperature dependence (Figs. 5.4

and 5.5). However, one criticism of this work was that the FS interface resistance

in our device was too high (the specific resistance of the Ni/Al interface was ∼ 370

mΩ µm2), so that the proximity effect induced in the ferromagnet may be suppressed.

In Ref. [40], Giroud et al. pointed out that the proximity effect is large only when

the FS interface is highly transparent. They observed a ∼ 12% resistance change in

a device with specific interface resistance estimated to be less than 6 mΩ µm2; while

no appreciable change in resistance was measured for a device with specific interface

resistance of ∼ 600 mΩ µm2.

Recently, in situ Ar+ plasma etching was applied in our fabrication process

to clean the ferromagnetic structures prior to depositing the Al film on top of them.

This method improves the FS interface transparency significantly, and enables us to

reduce the specific resistance to 20-40 mΩ µm2. Figure 5.8 shows a SEM image of a

Ni/Al interface device with specific interface resistance of 23 mΩ µm2. This device

has a relatively complicated configuration for other research purposes; here, we are

going to only concentrate on the proximity effect induced in the left Ni ellipse. Figure

5.9 shows the resistance of the left Ni ellipse as a function of temperature, measured
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Figure 5.8. SEM image of a Ni/Al interface device with specific inter-
face resistance of 23 mΩ µm2. We will only concentrate on the proximity
effect induced in the left Ni ellipse.

by the four normal-metal (Au) probes patterned on top of the Ni element. A clear

decrease in resistance has been observed at T < Tc, which is ∼ 1.2 K for Al. Note

that the total resistance change is about 0.07 % of the normal state resistance, and

the distance from the I− and V− probes to the Ni/Al interface is ∼ 36 nm. Thus, our

resistance change is much less than the measured resistance decrease by other groups

[39, 40].

However, before we conclude the resistance drop in Fig. 5.9 is indeed associ-

ated with the proximity effect in the Ni element, we should rule out other possibilities

which may also have contributions to the temperature dependent resistance change.

First of all, it has been proposed that current redistribution causes the same effect.

When we cool down the device through the transition temperature of the super-

conductor, the distribution of the measurement current in the Ni element may be

modified due to the transition. Therefore, it may change the measured resistance of

Ni. Notice that this effect would only appear at T ∼ Tc. In Fig. 5.9, however, the
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Figure 5.9. The temperature dependence of the left Ni ellipse shown in
Fig. 5.8, measured by the four normal-metal (Au) probes patterned on
top of the Ni element.

resistance of Ni ellipse gradually decreases as the temperature is decreased below Tc.

Therefore, the resistance drop, particularly the drop at low temperatures, would not

be a consequence of current redistribution. A second reason is the anisotropic mag-

netoresistance (AMR) of Ni. For a typical ferromagnetic metal, its AMR increases

as one decreases the temperature [40]. The overall resistance change is 0.1% in a

temperature range of 0.1-1.5 K. In fact, at a temperature above Tc in Fig. 5.9, we

do observe a slight increase in resistance as the temperature drops. Since the AMR

shows opposite temperature dependence compared with the proximity effect, it would

not contribute to the resistance drop below Tc.

Hence, we now can conclude that we have observed a weak proximity effect

in a ferromagnet (Ni) in contact with a superconductor (Al) with a specific interface
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resistance of 23 mΩ µm2. The total resistance drop below Tc in our measurements is

much less than that of the previous work [39, 40]. Additionally, it is important to

note that a major difference between our samples and the samples measured by other

groups is that the ferromagnetic elements in our case are elliptical in shape, which

presumably have a relatively homogeneous magnetization, and reduce the possibility

of the appearance of the triplet proximity effect. This may account for the smaller

amplitude of the effect we observe.



CHAPTER 6

Conclusions and future work

6.1. Thermal transport properties of mesoscopic devices

In Chapter 2 and 4, we have studied the thermal transport properties, i.e.,

thermal conductance and thermopower, of Andreev interferometers both experimen-

tally and theoretically. In particular, we have examined the Wiedemann-Franz law in

the proximity regime and measured phase coherent thermal conductance oscillations

as a function of the applied magnetic field. We find that our experimental results

are qualitatively consistent with our numerical simulations. In the study of the ther-

mopower of Andreev interferometers, we focused on the symmetry of the thermopower

oscillations with respect to the applied magnetic flux through the interferometer loop.

Our results show that the symmetry is essentially associated with the distribution of

the supercurrent in the device, which indicates that the origin of the thermopower

oscillations may arise from the conversion of the supercurrent to the quasiparticle

current.

The conclusions and future developments of our work are summarized in the

following.

6.1.1. Thermal conductance of Andreev interferometers

In the experimental investigations of this topic, we have measured the thermal con-

ductance of Andreev interferometers in two different geometries, namely the “house”

146
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and “parallelogram” interferometers. In both cases, we observe strong suppressions in

thermal conductance and deviation of the Wiedemann-Franz law at low temperatures.

In addition, we find the thermal conductance behaves non-linearly as a function of the

thermal current IT through the sample, showing a remarkable
√

IT dependence at low

thermal currents. As a magnetic field is applied, the measured thermal conductance

oscillates periodically with a fundamental period corresponding to one flux quantum

Φ0 = h/2e, demonstrating the phase coherent nature of the thermal transport in

these devices. As with the electric conductance, the thermal conductance oscillations

are symmetric with respect to the magnetic flux.

In the theoretical study of this topic, we extend the quasiclassical theory of

the superconductivity and calculate the thermal conductance of the “house” and

“parallelogram” Andreev interferometers. Our simulation results are qualitatively in

agreement with the experimental results.

As we pointed out in Chapter 4, the deviation of the measured thermal con-

ductance to the theoretical predictions may be associated with the long length scales

required to equilibrate the energy of the quasiparticles in mesoscopic systems. Hence,

it would be very instructive if we can measure the thermal conductance of a single

normal-metal wire. However, in our devices, the design of the thermometers requires

superconducting leads, which always introduce superconducting correlations in our

measurements. In order to avoid this problem and measure the thermal conductance

of a pure normal-metal system, a superconductor/insulator/normal-metal (SIN) tun-

nel junction probably is the best choice of the thermometry.
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6.1.2. Thermopower of Andreev interferometers

In order to study the relation between the symmetry of the phase-dependent ther-

mopower oscillations and the supercurrent distribution in the device, we have designed

a double-loop interferometer, in which we can change the supercurrent distribution.

Our measurements show that the symmetry of the thermopower oscillations can be

either symmetric or antisymmetric in the same device depending on the distribution

of the supercurrent. Unfortunately, the detailed mechanism of the coupling of the

thermopower to the supercurrent is still unknown at the moment, which needs to

be further investigated both experimentally and theoretically. Additionally, as was

found before, the amplitude of the thermopower oscillations shows a non-monotonic

dependence on the temperature, showing a maximum at some intermediate tempera-

ture Tm. In our measurements, we find that this intermediate temperature is related

to the correlation energy Ec of the system, Tm ∼ Ec/kB.

In addition to continuing the investigation of the dependence of the ther-

mopower on the supercurrent in Andreev interferometers, we are also in the process of

exploring their use in potential devices, in which we can tune the thermopower of An-

dreev interferometers by changing the supercurrent. It has been shown that in such

devices, depending on the applied magnetic flux, the thermopower of the Andreev

interferometer can be either positive (n-type) or negative (p-type). The magnitude

of the thermopower is tunable as well, up to the order of a few µV/K. This kind

of device, if successful, will be an exciting practical application of the thermoelectric

effects in NS heterostructures. It may provide a new mechanism for designing on-chip

cooler for future highly packed electronics.
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6.1.3. Thermal transport properties of other mesoscopic samples

It has been continuously a popular topic to study the thermal transport properties

of mesoscopic devices in recent years. A typical example is the investigations of

the thermal and thermoelectric properties of carbon nanotubes, which has attracted

much interest recently [83, 126, 127]. Based on our knowledge and the techniques

developed during the study of the thermal conductance and thermopower of Andreev

interferometers, it should not be difficult for us to measure the thermal properties

of other mesoscopic samples. Actually, the measurements of the thermopower of

individual multiwall carbon nanotudes are already in process.

6.2. Spin transport in ferromagnet/superconductor devices

In Chapter 5, we have studied the differential resistance of mesoscopic FS junc-

tions as a function of the voltage bias. We observe a number of interesting features in

the dV/dI vs. V curve, which are associated with charge imbalance and the injection

of spin polarized current into the superconductor. In particular, we have observed

the splitting of the dips in dV/dI as a function of the applied magnetic field, due to

the Zeeman splitting of the quasiparticle density of states. We have also observed

peak structures in dV/dI at voltage biases corresponding to the superconducting gap,

which are related to the charge imbalance effect in the superconductor near the FS

interface. Finally, we have studied the superconducting proximity effect in a ferro-

magnet in proximity to a superconductor with a highly transparent FS interface. In

our experiments, we find a long range proximity effect in the ferromagnet at a dis-

tance of ∼ 36 nm from the FS interface. This measured effect is much less than that

of other groups.
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The FS heterostructure device is a gold mine, which involves tremendously

interesting physics. The work described in this thesis is only a scratch on its surface.

To date, although a number of beautiful experiments have been done in this field,

many topics are still not matured and need to be further investigated. Our ability

of making highly transparent FS interfaces and precisely aligned multilayer e-beam

lithographic devices opens the possibility for us to study the challenging but inviting

physics in this field.
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[96] Y.M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).

[97] L. Spietz, K.W. Lehnert, I. Siddiqi, and R.J. Schoelkopf, Science 300, 1929
(2003).

[98] M. Henny, H. Birk, R. Huber, C. Strunk, A. Bachtold, M. Krüger, and C.
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