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ABSTRACT

Electrical Properties of Mesoscopic Spin Glasses

Jonghwa Eom

The electrical properties of mesoscopic AuFe wires have been measured in “He, *He, and
dilution refrigerators. AuFe alloys in this study have Fe concentrations ranging from 0.1
to 0.4 at%, and their spin glass freezing has been observed in the resistivity p(T) as a
function of temperature, which shows a broad maximum at a temperature T,,. p(T) of the
AuFe spin glass wires has been investigated for wires of various widths in the range of
150 om - 300 pm. The resistivity p(T) of the AuFe wires indeed shows a size
dependence. As the width of the wire is reduced, the amplitude of the resistivity
maximum increases, and T, shifts toward lower temperatures. However, the size
dependence originates not from some intrinsic spin glass property, but from the
electron-electron interaction contribution to p(T). The four-terminal differential
resistance, dV/dI, has also been measured as a function of dc current bias, I. We find that
dV/dI becomes asymmetric in / when the width of at least one voltage terminal is less
than 150 nm and different from the width of the other voltage terminal. We analyze
dV/dI(I) of the AuFe wires by a model heat flow equation, and find that the asymmetry in

dv/dI(I) reflects the size dependence of thermopower in mesoscopic AuFe spin glass

wires.
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Chapter 1

INTRODUCTION

1.1 Size effect in electron scattering by magnetic impurities

Since its inception in the late seventies, mesoscopic physics has grown very rapidly
because of modern nanofabrication technology. Utilizing a variety of etching and
lithographical techniques, the size of electronic devices now approaches microscopic
length scales. Complicated structures are frequently squeezed into a spot of 1 or
2 pm [47, 58, 138]. In such small devices conduction electrons behave coherently,
giving rise to many kinds of quantum phenomena which are not observable in large
scale devices.

The first example of such quantum phenomena is quantum interference, which
includes weak localization [1, 20], conductance fluctuations [92], and the Aharanov-
Bohm effect {8, 131]. These phenomena still provide some of the most challenging
topics in mesoscopic physics (3, 93, 99]. In magnetic materials, quantum interfer-
ence effects are more complex and interesting. Israeloff and Weissman [73] measured

electrical noise in spin glass CuMn films and found the noise grows dramatically
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as the films are cooled through the magnetic freezing temperature. The noise is
attributed to spin fluctuations which are coupled to the resistivity through con-
ductance fluctuations [52]. de Vegvar et al. [44] measured the magnetoresistance of
CuMn mesoscopic spin glass wires and found fluctuations which were specific to mi-
croscopic spin configurations. These ‘magnetofingerprints’ are robust in magnetic
field cycling, but dependent upon thermal cycling.

A second example of quantum phenomena is the size effect. When samples
become smaller than a microscopic length relevant to some physical effect, funda-
mental modifications are expected in physical properties. The relevant length scale
can be elastic mean free path, phase coherence length, or some other important
length depending on the physics involved in the properties of interest.

Our question here is a microscopic length scale related to dilute magnetic
alloys. Wilson in his renormalization group treatment of the Kondo effect [135]
pointed out that the Kondo bound state has a critical transition to an infinitely
strongly bound singlet state only when a sample becomes larger than a critical
length £x = hvp/kgTk. The idea of this length scale has been adopted by many
researchers [61, 62, 72] and accepted as the radius of the Kondo screening cloud,
which is basically an electron cloud accumulated around a magnetic impurity.

The first demonstration for this length in transport measurements was reported
in a publication by Chen and Giordano [38]. However, as Bergmann argued [17},

there is a question about the estimation of éx and the actual size can be a few
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orders of magnitude smaller than Avg/kgTk. Furthermore, a series of subsequent
low temperature transport measurements by DiTusa et al. [46], Blachly et al. [27],
Chandrasekhar et al. [34], and Yanson et al. [137] did not agree with each otker, so
that there is no definite conclusion regarding the size effect of the Kondo resistivity
slope as well as the Kondo temperature.

In this study, we lock for a fundamental length relevant to dilute magnetic
alloys. We have used AuFe metallic spin glass thin films for dilute magnetic alloys.
In spin glasses the distance between magnetic impurities is expected to be smaller
than the radius of the Kondo screening cloud [19]. We want to answer the question

“Is there a size effect in spin glasses?”.

1.2 Before mesoscopic spin glasses

Spin glasses are fascinating systems which provide not only a variety of new con-
cepts but also many unique phenomena. The history of spin glasses goes back to
the 1970’s when the term ‘spin glass’ was first coined. After evidence for a phase
transition was discovered in low field susceptibility measurements [33], spin glasses
became a very attractive topic in condensed matter physics and have been investi-
gated by a wide spectrum of experimental probes including magnetization, specific
heat, resistivity, and neutron scattering [100].

A spin glass is a system of magnetic impurities, for which the moments are

frozen in random orientations. The randomness originates from competitive interac-
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tions among the magnetic moments, which are freely rotatable at high temperature,
but are frozen below a certain temperature T, which is called the spin glass freezing
temperature. The key features of the interactions in metallic spin glasses are de-
scribed by the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction (77, 110, 139],
which is an oscillating function of the distance (r) between magnetic moments, its
amplitude decaying as 1/r>.

There are still many unresolved problems with regard to spin glasses. Among
those the most fundamental issue is whether the spin glass freezing is a phase
transition or not. Zero field ac susceptibility supports the existence of a phase
transition [33], but other properties such as resistance and specific heat do not
provide definite evidence for the existence of a phase transition (57, 133]. In con-
ventional neutron scattering experiments, despite a lot of work, no one has found
any change in spin density wave associated with spin glass freezing [32, 60, 134].
From the theoretical point of view, the difficulties with spin glasses include the fact
that there is no conventional order parameter as in ferromagnetic or in antiferro-
magnetic material.

Spin glasses have been found in a variety of materials including metals, semi-
conductors, and insulators [100]. Among these, we will concentrate on metallic spin
glasses in this study. The metallic spin glass has been made by alloying a noble
metal (Au) with a small amount of transition metal (Fe). The magnetic impu-

rity (Fe) concentrations of our samples range from 0.1 to 0.4 at%. Although no
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measurements have been made in this study, Kondo (in the dilute impurity limit),
or ferromagnetic (in the highly concentrated impurity limit) samples can be made

simply by adjusting the impurity concentrations.

1.3 Mesoscopic spin glasses

In this study we have confined our focus to mesoscopic spin glasses, which means
spin glasses whose dimensions are on the order of ~ um. The problem which we
are going to investigate is what is the relevant microscopic length scale for spin
glasses. The system we studied in this dissertation are AuFe nanowires, which are
fabricated by electron beam lithography, combined with either flash evaporation of
AuFe mother alloy or Fe ion implantation into Au thin films.

The measurements which we employed are divided into two different categories;
the resistivity as a function of temperature p(T), and the differential resistance as
a function of dc bias current dV/dI([).

A conventional tool to probe the size dependence of the Kondo effect has
been a measurement of p(T) [24, 34, 38, 46]. In spin glasses, p(T’) is still an
important tool to investigate the properties of interimpurity interactions. The shape
of p(T") becomes more complicated due to the interplay of the spin-flip scattering
and the spin glass freezing [89, 90]. We will analyze the influence of size on p(T") of
mesoscopic AuFe spin wires.

A measurement of dV/dI(I) of mesoscopic AuFe spin glass wires has also been
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developed as a useful probe to investigate the transport properties of spin glasses.
Most dV/dI(I) experiments for spin glasses so far [124, 125, 136, 137] have focused
mainly on the ballistic transport regime, where the actual sample size is comparable
to the elastic mean free path. In this study, we extend dV/dI(I) measurements to
the diffusive regime and find an interesting phenomenon in this regime as well.
The differential resistance dV/dI(I) is directly related to the issue of heat flow in
diffusive metals, and gives information about one of the off-diagonal elements of

the transport matrix; the thermopower.



Chapter 2

PREVIOUS EXPERIMENTAL WORK

2.1 Size dependence in the Kondo resistivity

2.1.1 Finite size effect in the magnitude of the Kondo anomaly

In the past eight years a number of groups including ourselves have studied the
influence of the size of samples on the Kondo anomaly. The critical length to see
a size effect of the Kondo anomaly is believed to be the Kondo length, which is
estimated to be £x =~ Rvup/kgTk in clean samples (see Section 3.3.4). Physically
£k is expected to be the size of the conduction electron screening cloud (the Kondo
screening cloud) around the magnetic impurity. Experiments have focused on the
deviation of the resistivity from its value in bulk samples as the size of samples
is reduced below £x. The first experiment was by Chen and Giordano [38], who
measured the resistivity of AuFe 30 ppm thin films and found that the logarithmic
slope of the Kondo resistivity became smaller as the film thickness was reduced
below ~ 2500 A.

Soon after Chen and Giordano’s experiment, DiTusa et al. [46] explored the

effect of finite size on the Kondo resistivity anomaly in CuCr systems. In their
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experiments, samples with two different concentrations (1000 ppm and 2000 ppm)
were prepared. In the 1000 ppm CuCr films, which were claimed to be in the Kondo
regime, the slope of resistivity decreased as the width of samples was reduced below
~ 10 pm. However, in the 2000 ppm CuCr films, which were in the spin glass
regime, the temperature T,, where p(T) has a maximum decreased as the width
was reduced below ~ 2.0 um. They interpreted the decrease of T}, as being due to
the modification of interimpurity interactions caused by the reduction of the sample
size.

Another experiment on AuFe alloys showed the 2-dimensional to 1-dimensional
crossover in the slope of the Kondo resistivity. Blachly and Giordano [27] found
the Kondo resistivity slope drastically decreased as the width of the wires was
reduced below 2000 A. They associated this length scale with the Kondo length
£x appropriate for dirty metals. In the presence of impurities, the Kondo length
£k is given by the dirty limit formula £x = W, which is ~ 3000 Afor
samples of Blachly and Giordano [27]. However, when the width of the samples
was reduced further below Ly (~ 1200 A at 1.5 K), the low temperature resistivity
slope was found to increase. This was interpreted by the fact that electron-electron
interactions contribute to the low temperature resistivity, giving rise to an increase
in p as T is reduced.

So far we have illustrated many experiments on a variety of magnetic alloys,

and in each experiment the manipulation of sample size has been accomplished
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either by varying the film thickness or by varying the width. The consensus from

the experiments are as follows:

e The Kondo temperature shows no significant size effect.

e The low temperature Kondo resistivity slope, dp/dInT decreases as either

the film thickness or the width of the wire is reduced.

The Kondo temperature Tk is defined as a fitting parameter in a fit equation [45]:

- L } (2.1)
[1n2(T/TK) +m2S(S + 1)11/2 )

Ap(T) =po+B{1

where the parameter B depends on the host metal, the impurity element, and

concentration. S is spin of a impurity.

2.1.2 Kondo scattering in point contacts

Yanson et al. employed the mechanically controllable break junction technique to
investigate the point contact spectra dV/dI for CuMn alloys [136, 137]. The size
of the contact is comparable to atomic size scales, ranging from 2 to 50 nm. They
found that a zero bias maximum in dV/dI due to Kondo scattering increased as
the contact diameter d was reduced. Turning to the theory for Kondo scattering
in point contacts [105], they estimated J/Er by measuring d2I/dV?2. Here J is the
exchange interaction, and EF is the Fermi energy. The estimated J, /EFp scaled as
d as ~ d~'/3, and the calculated Kondo temperature kgTk (= Er exp(—2EFr/3J))

shows a strong size dependence, reaching Tk ~ 3x 103 K at d =~ 2 nm. In the upper
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limit of the point contact size (d = 50 nm), Tk reaches ~ 2 K. The bulk value of
Tk for CuMn is usually taken to be order of 0.01 K, and hence the crossover length
scale for the anomalous enhancement of Tx was estimated to be ~ 0.5 pm.

By using the same mechanically controllable junction technique, van der Post
et al. [124] investigated the size effect of the Kondo scattering in CuFe alloys. As
before, Tk increased as d was reduced, but only by a factor of ~ 2. For example,
Tx =~ 50 K at d =~ 1.5 nm, which was comparable to Tx =~ 30 K at d =~ 35 nm.

In summary, the mechanically controllable junction technique was used to in-
vestigate the size effect at very small length scales ranging from 2 to 50 nm. It
was found that the estimated Tk increased as the contact size was reduced. It is
worthwhile to note that no change of Tk was found in the quasi 1-dimensional wires

or 2-dimensional films, discussed in Section 2.1.1.

2.1.3 Absence of size dependence of the Kondo resistivity

Most experiments indicate the existence of a size effect in the Kondo resistivity.
However, there is one experiment which provides evidence for the absence of size
dependence of the Kondo resistivity. Chandrasekhar et al. [34] measured the re-
sistivity of AuFe wires which were fabricated by ion implantation methods. The
width of the samples ranged from 38 nm to 106 um. Ap (= p(T') — p(T = 8K))
indeed showed a size effect, increasing as the width of wires was reduced. How-

ever, after subtracting the electron-electron interaction contribution from Ap, the
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material thickness width Tk Ex size effect | Ref.
AuFe | 265-4350 A 2D film 1K | 10 ym yes [38]
CuCr 212 A 014-35um | 2K | 6 pum yes [46]
AuFe 150 A 0.14-150 pm | 1K | 10 gm yes [27]

CuMn || point contact | 2-50nm |{0.01 K| 1.2 mm yes [137]

CuFe point contact | 1.6 - 34 nm 30K | 0.4 um yes [125]

AuFe 300 A 038-105pum| 1K | 10 ym no [34]

Table 2.1: Previous experiments on the size effect of the Kondo resistivity.

pure Kondo contribution to resistivity appeared to be independent of the width of
the wires down to a width of 38 nm. This observation obviously runs counter to
the previous observations which agree to the size effect of the Kondo scattering,
bringing about a controversy regarding the size scale of the Kondo screening cloud.

Even before the work by Chandrasekhar et al. there were two experiments
which supported the absence of a size effect in the Kondo resistivity. Van Hae-
sendonck et al. [126] measured weak localization in CuCr thin films of various
thicknesses and found that the electron-spin scattering time was not altered from
the bulk value, down to a film thickness of ~ 50 A. Bergmann [19] measured weak
localization in Mg/Fe/Mg thin film for different thicknesses of the second Mg film
and found the screening of the magnetic impurity was not hindered by the finite

size of the second Mg film thickness, if the thickness of this film was above ~ 5
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atomic layers.
We summarize the experimental studies on the size dependence of the Kcndo
resistivity in Table 2.1, where Tk is the Kondo temperature of a bulk sample and

the corresponding Kondo length £ is estimated by Ave/kgTk-

2.1.4 The role of disorder

Although it was not directly related to the size effect of Kondo systems, an interest-
ing issue was experimentally investigated by Blachly et al. [25]: namely, what role
does disorder play on the Kondo effect in 2-dimensional films? Practically, they
studied the Kondo effect which is affected by disorder in an overlayer film. They
fabricated bilayer samples which consisted of CuFe and Cu 2-dimensional films.
The first layer was a CuFe film. For the second layer, the Cu film was actually
sputtered in an Ar environment. The pressure of the Ar determines the degree of

disorder. We summarize their observations:

e An enhanced Kondo effect was observed in the presence of a nonmagnetic

overlayer.

e The presence of disorder in a nonmagnetic overlayer suppressed the Kondo

effect.

A similar effect has been also found in a slightly different system, namely AuFe/Au

thin film [26]. A theoretical model to explain this effect {96, 121, 122, 123] has been
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proposed, and will be described in Section 3.4.1.

2.2 Size dependence in the spin glass resistivity

How is the size effect modified if distances between magnetic impurities are smaller
than the size of the Kondo screening cloud? To answer this question, a series of
experiments on systems with concentrated magnetic impurities, i.e., spin glasses

have been done in the last four years.

2.2.1 Finite size effect in spin glasses

Lane et al. [87] measured resistivity of CuCr films with concentrated magnetic
impurities and found a size dependence of the interimpurity interaction A. in spin
glasses. A. was qualitatively estimated by the average local internal field, Hy,

which was obtained from the fit of the resistance maximum temperature, T, as a

function of magnetic field, H
H?

Tn(H) = TWm(0) = A——e——
(H) m(0) Ny

where A is independent of size and thus a constant for samples from the same

(2.2)

evaporation. By measuring Hy in samples of various sizes, Lane et al. [87] concluded
that A, decreased as either the width (ranging from 0.9 - 5.0 um) or the thickness

(ranging from 150 - 1670 A) of the samples was reduced.

van der Post et al. [125] studied the point contact spectroscopy of CuMn (1

at%) sample using a mechanically controllable break junction. The diameter of
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the contact ranged from 0.5 nm to 50 nm. The observed dV/dI showed that the
ratio A./Tk decreased with decreasing contact diameter. However, the decrease
of A./Tk did not indicate directly the size effect in A., because Tk itself had
been found to be dependent on size [136, 137]. Furthermore, the internal field, Hq,
showed no evidence of size dependence. Therefore, it was concluded that there was
no definite evidence for size dependence of A, in point contact spectroscopy, in the

size regime ranging from 0.5 to 50 nm.

2.2.2 Absence of size dependence in the spin glass resistivity

Neuttiens et al. [104] extended the study of size dependence of AuFe wires from
the Kondo regime to the spin glass regime. Keeping the film thickness the same,
the width of the samples was varied from 300 um down to 150 nm. The detailed

analysis of this result will be discussed in Section 5.3. The conclusion of this work

can be summarized:

e Although the resistance maximum temperature 7;, decreases as the width of
the sample is reduced, this is due to the electron-electron interaction (EEI)
contribution to the low temperature resistivity, p(T"). After subtracting the
EEI contribution, p(T)’s of samples of different widths fall into a single func-

tional form, indicating no size dependence in the spin glass resistivity.

o The presence of disorder in the samples affects the interimpurity interaction

A.. A, decreases as disorder is increased. The disorder effect is more promi-
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nent in thin films in comparison to bulk samples. A, is less by a factor of ~

3 in thin films compared to bulk samples.

2.2.83 Size dependent thermopower in mesoscopic spin glass wires

Very recently Strunk et al. [115] combined an electron heating experiment (which is
basically identical to the experiment in Chapter 6) and noise thermometry to mea-
sure the thermopower of AuFe spin glass nanowires. The method they employed
is basically the same as that in this dissertation. They measured the differential
resistance as a function of dc bias current, and estimated the difference in the ther-
mopower of two AuFe wires of different widths. In contrast to the experiments
discussed in this dissertation, the electron temperature of the heater wire is di-
rectly measured by noise thermometry, rather than being estimated by a model
heat flow equation. Ion implanted AuFe wires were used, and the impurity concen-
trations were 50 ppm and 0.3 at%. For both the concentrations they found non-zero
dV/dI4(I)’s at the bath temperature T = 0.3 K. They also found that the ampli-
tude of dV/dI4(I) for 0.3 at% AuFe wires is bigger than that for 50 ppm. They
showed the thermopower difference AS(T') of two different 0.3 at% AuFe wires, of
which widths were 305 nm and 105 nm respectively. The estimated AS(T') is ~ 0.6
pV/K at T = 4 K. This magnitude is comparable to the value (AS =~ 0.4 uV/K)

found in the experiments in this disseration.



Chapter 3

MODELS AND THEORIES

In this chapter we are going to review relevant concepts and models with regard
to dilute magnetic alloys. First, we discuss magnetic moments in metals. Second,
a brief review of the classic models of spin glasses will be given. Although these
classic models may not be directly related to the experiments in this study, they are
incorporated in this chapter to give a more general understanding of spin glasses.
After the review of the classic models, we review the more recent theoretical models

which attempt to explain the results of experiments in mesoscopic Kondo alloys.

3.1 Magnetic moments in metals

3.1.1 Isolated magnetic impurity; the Kondo effect

Even very small amounts of magnetic impurities cause a manifest difference in the
resistivity of metals (Cu, Ag, Au, etc) at low temperatures, giving rise to a resis-
tivity p(T), which increases logarithmically as the temperature T is lowered. The
interplay of this contribution to the resistivity with the contribution due to phonon

scattering at higher temperatures leads to a minimum in p(7T") at some intermediate

16



17
temperature T. This phenomenon is known as the Kondo effect after Jun Kondo {85]
who explained the effect by taking into account the higher order corrections in the
electron-spin scattering matrix. He showed that the magnetic scattering cross sec-
tion could be divergent when the scattering was treated to more than the leading

order term in perturbation theory. Kondo’s result for the logarithmic increase in

p(T) is given in the form of 63, 83]
PKondo ™~ Fo [1 - JN(O) In (%)] , T'>Tk (31)

where J is the exchange interaction, N(0) the electron density of states at the
d orbital of the magnetic impurity, and A the d level broadening. The Kondo
temperature Tk is the temperature at which resistivity p(T) deviates from the

above approximation pxondo(T), and is given by

kBTK =~ Aexp [—iji(o—):l (32)

In addition to the Kondo contribution, the low temperature resistivity includes
the phonon contribution, which is proportional to T® [13]. Therefore, the resistivity

is expected to have following properties:

e p(T) has a minimum at a temperature Trin, which is given by dp(T)/dT = 0.

Timin is proportional to N(0)/°, and hence  c*/5, where c is the concentration

of magnetic impurities.

e The slope of the logarithmic increase in p(T') is proportional to ¢. For example,
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experimentally the slope for AuFe alloys is found to be ~ 0.11 nQ2cm/ppm

per decade of temperature[64, 100].

Dilute magnetic alloys exhibit a large thermoelectric effect. This is simply
due to the strong energy dependence of the distribution function of the conduction
electrons at the Fermi level. The thermopower for dilute magnetic alloys is given

in the form of [140]

71’2 kg alnp(e)
S = —5—ksT [6—5 B (3.3)

where € is energy of conduction electrons. Again, the strong energy dependence
of Prondo at the Fermi level er explains the giant thermopower observed in dilute
magnetic alloys. Note that Eq. 3.3 holds also for conventional normal metals.

Some features of thermopower in dilute magnetic alloys are listed here [84]:

e When the thermal energy is smaller than the Zeeman splitting of the localized
spins (T <« 2ugHy/kg, where Hy is internal field), the thermopower shows a

linear dependence in T'.

e When T > 2upHy/kg, thermopower becomes independent of the impurity

concentration as well as temperature.

e When phonon scattering dominates the magnetic scattering, the thermopower
deceases. The decrease occurs faster for lower impurity concentration than

for higher impurity concentration.
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e In a magnetic field, the thermopower is expected to vary as 1/H. However,

the actual behavior is considerably more complicated [69].

3.1.2 Interactions between magnetic moments; the RKKY interaction

The magnetic moments in a dilute magnetic alloy communicate with each other
if the concentration of magnetic impurities exceeds a certain value. The distance
between impurities is not necessarily close enough for their charge distributions to
overlap directly, but is close enough to make an indirect exchange interaction via
conduction electrons. This interaction is the so-called Ruderman-Kittel-Kasuya-

Yosida (RKKY) interaction, which is an oscillating function of distance r, [77, 110,

139

Tnscrer(r) o 5 [CZZI;‘;T - (s;ff)ﬁ] (3.4)

The above equation (Eq. 3.4) is derived with the assumption that metals are
in the clean limit; that is, the mean free path ¢ is much longer than the average
interimpurity distance R. Modification of the RKKY interaction would be expected
in the disordered metal when the mean free path ¢ < R. Jagannathan showed [74]
that although the first cumulant J)(R) (= [J]ay, where [ Joy is an average over
impurity configurations) falls off as exp(—R/¢), the second cumulant J@(R) (=

[(J = [J]av)*av is long ranged, falling off as a power law in R just as in the pure

metal. The thermodynamic average of J®(R) and J@?(R) are given by [74]:

J(R) = Joezp(—R/¢)



Note that while J((R) depends on ¢, J(?(R) is independent of £.

Depending on the experimental quantity of interest, the effective interaction

between spins is determined by either J()(R) or J®)(R). For example, while the line
shift in the nuclear magnetic resonance (NMR) spectrum should yield information
on _Jﬁ)(_Ri the spin glass freezing temperature Ty is determined by J(z—)(R_) (54,
113]. Therefore the line shift of the NMR spectrum is expected to fall off as ~

exp(—R/¢) [65], but T is ezpected to be independent of € [127].

Bergmann [18] also investigated the RKKY interaction in the disordered regime.
He interpreted the RKKY oscillations as an interference of the conduction elec-
trons scattered off the impurities with a magnetic moment, which is similar to his
treatment of weak localization except that the impurities now are magnetic impu-
rities [20]. He found that the zero temperature exchange interaction J(r) depends
on the distance as 1/r%, where d is the sample dimension and at finite temperature

its range is limited by the thermal diffusion length (AD/kgT)'/2.

3.1.8 Spin glasses

When the RKKY interactions among magnetic impurities become dominant over
the thermal energy kgT, the spins in concentrated magnetic alloys freeze with

random orientations. The randomness originates from the fact that the distances
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between impurities are randomly distributed, and the RKKY interaction alternates
in sign as a function of the distance between impurities.

Some measurements show that a spin glass freezing occurs gradually as the
temperature T is lowered, and do not support the existence of a phase transition.
However, the zero field ac susceptibility has a sharp cusp at a temperature T¥,
which supports the existence of a phase transition [33]. Since there is no explicit
order parameter which can be confirmed by experiments, it is still being debated
whether the spin glass freezing is a phase transition or not.

The resistivity of a spin glass shows a broad maximum at a temperature T;,,
which is a factor of 2 - 3 higher than Ty [57]. The broad maximum comes from
the interplay of the Kondo effect and the spin freezing at lower temperature. The
mechanism of the Kondo effect which is based on spin flip scattering, still exists even
in the presence of the RKKY interactions [90], causing an increase of the resistivity
as T is lowered. However, when the thermal energy kgT becomes smaller than the
RKKY interaction, spin flip scattering is suppressed, and resistivity thus decreases
as T is lowered. Consequently a broad maximum is found in p(T).

Although the spin glasses discussed here are restricted to metallic spin glasses,
there are other types as well; insulating spin glasses and semiconducting spin
glasses. These spin glasses include, for examples, (EuSr)S, CdMnTe, (MgFe)Cl,,
and ZnFeF; [100]. In such spin glasses there are no conduction electrons to mediate

the interactions between magnetic moments. However, the nonmagnetic ions over-
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lapping the charge clouds of the neighboring magnetic ions convey the interactions
between the magnetic moments; this is the so-called superezchange interaction. In
these spin glasses the detailed microscopic interactions are not the same as that
in metallic spin glasses, but share their nature with metallic spin glasses and are

describable by the same models.

3.2 Classic theoretical concepts and models for spin glasses

In this section we denote the spin glass freezing temperature by 7., in the spirit

that spin glass freezing is a true phase transition in the framework of infinite ranged

exchange interactions.

3.2.1 Order parameter; the Edwards and Anderson model

Although the RKKY interaction explains how the spins in a dilute magnetic alloy
have randomness in the configuration of their orientations, it does not provide a
further description for ‘spin glass freezing’. For the dynamics regarding a phase
transition, one needs a more dependable theoretical tool, for example, a mean field
theory. Even with a mean field theoretical approach it is a difficult task to describe
the spin glass freezing, because there is no conventional long range order which is
experimentally observable, as in ferromagnetic or antiferromagnetic materials.
The first attempt to solve this problem was by Edwards and Anderson [48].

In their pioneering paper they proposed a spin glass order parameter g, which is
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defined by

qg= Aliigloo < si(t) - si(t + At) > (3.6)

where < > represents a thermodynamic average and s;(t) is the spin which is found
at a lattice site 7 at the time t. At T = 0 one expects ¢ = 1, whileat T > T,, ¢ = 0.
Starting with a simple interaction energy Jj;s; - s;, Edwards and Anderson
calculated the order parameter as a function of T' [48], which is given as follows:
¢ =5 [1— (%)2} (%)4

V2 Jy
3kg (3-7)

where 7T, =

where Jy is the mean value of exchange interaction. A non-zero q exists in the
regime 0 < T < T, indicating the existence of a second order phase transition. A

further calculation for the susceptibility x yields

when T >T,

—OT.-T)> when T<T, (3.8)

Ne e

This result explains well the generic shape of the measured x(T'). However, in
a further calculation the theoretical specific heat for s = 1/2 was found to be
in complete disagreement with experiment [54]. Nevertheless, the Edwards and
Anderson model provides a convenient simple picture of the spin glass transition as

well as the definition of an appropriate order parameter.
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Figure 3.1: Phase diagram for infinite ranged Ising spins from the Sherrington and
Kirkpatrick model. From Ref. [112]

3.2.2 The first mean field theory of spin glasses; the Sherrington and Kirkpatrick

model

Let Hs(s) be the Hamiltonian for a spin glass system, which depends on the con-
figuration of spins s and on the interaction J between the spins. The magnitude
of J is distributed according to a probability P(J), the functional form of which
depends on the model one chooses.

The simplest choice for P(J) may be a Gaussian distribution, which is found
to be good enough for most studies of thermodynamic properties [82]. Using the
Gaussian distribution P(J), Sherrington and Kirkpatrick [112] applied mean field
theory to infinite ranged spin glasses. In an infinite ranged spin glass the functional
form of P(J) is the same for any pair of spins in the system. In the end they

provided a phase diagram of a spin glass ferromagnet, which is shown in Fig. 3.1.
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As Sherrington and Kirkpatrick showed, there are two significant order pcram-

eters in the phase diagram, which are given as follows:

m = [<8§; >
¢ = lim [<sit)si(t+AL) >l (3.9)

A non-zero m indicates ferromagnetic order, while non-zero g indicates magnetic
order, i.e. a spin glass. There are three different regimes depending on the order
m and q; first, a paramagnetic state (m = 0 and ¢ = 0), second, a ferromagnetib
state m # 0 and q # 0, and third, a spin glass state m = 0 and ¢ # 0. In Fig. 3.1,
Jo is the average of the exchange interaction J and A is the second cumulant of J.

An interesting situation happens for Jy/A between 1 and \/;/_2, which can
be satisfied in a certain range of magnetic impurity concentrations. There are two
phase transitions in sequence as T is lowered. A phase transition from paramagnetic
to ferromignetic is followed by a transition from ferromagnetic to spin glass; the so-
called reentrant effect. In the exact solution of the Sherrington-Kirkpatrick model
by Parisi’s replica symmetry breaking scheme, this reentrant spin glass phase is
replaced by a mized zhase which is a ferromagnetic phase with replica symmetry
breaking {22|. Regardless of what the reentered phase is called, reentrance effects
have been observed in various systems [39, 49, 95

The Sherrington-Kirkpatrick (SK) model is a mean field theory version for
the Edwards and Anderson model, which is exactly solvable with a replica trick

and reproduces the most desirable features of the Edwards and Anderson model.
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Figure 3.2: Exact phase diagram of the SK model by Parisi’s replica symmetry
breaking. Lines 1 and 5 are determined by the Almeida-Thouless instability, line
2by g =0, line 3 by m =0, ¢ =0, and line 4 by g # 0, m = 0. The broken line
represents the (incorrect) original SK solution. From Ref. [53].

However, it gives a negative entropy at low temperature, which cannot be correct
in discrete Ising models. Such problems in the SK model have been investigated
extensively by de Almeida and Thouless [43]. They found an instability (which
means the free energy is no longer an extreme) not only in the spin glass phase of the
SK model for all temperatures below T, at zero field, but even in the ferromagnetic
phase at non-zero field where the SK solution had been analytic. This instability

problem led to a series of works with regard to replica symmetry breaking [106,

107, 108].
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Figure 3.3: Parisi solution for the order parameter ¢(z) near T' = T.. The solid line
is for local field h = 0 and the broken line is for a finite h. For A = 0, ¢nin = 0,
but ¢ increases monotonically as h is increased. From Ref. [53].

3.2.8 Replica symmetry breaking; the Parisi solution

The SK solution, although it is the first true mean field treatment of spin glass,
turns out to be clearly unphysical. The free energy of the SK solution leads to a
negative entropy for T — 0. This problem and the Almeida and Thouless (AT)
instability require a reconsideration of the replica symmetry scheme in the mean
field theory. A breakthrough of the problem has been made by Parisi [106, 107, 108];
the so-called replica symmetry breaking (RSB). The key result of RSB is that the
order parameter is replaced by the integral of the order parameter density q(z),
where the parameter z runs from 0 to 1 continuously. The idea in introducing the
parameter z is to make the order parameter ¢ continuous in the local field h. ¢(z)
for a spin glass has been calculated near T = T, and is shown in Fig. 3.3.

The susceptibility of a spin glass, which is obtained from the second derivative
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Figure 3.4: Parisi solution for a susceptibility. Susceptibility x = (ksT) (1 —
J3 q(z)dz), x = (kgT)~(1 — g(1)), and the broken line represents the SK solution.
From Ref. [53].

of free energy with respect to local field A, is given in the form of

X= kBLT [1 -~ /01 q(:z:)dx] (3.10)

The final result for x(T') is shown in Fig. 3.4. x resembles the field cooled suscep-
tibility found in experiments, while ¥ = (kgT")~! (1 — ¢(1) ) the zero field cooled
ac susceptibility.

The importance of Parisi’s RSB solution includes the fact that it resolves not
only the AT instability in the spin glass state but also the problem with regard to
the negative entropy. It also proves that the spin glass system is still manageable
within the framework of the mean field theoretical approach. However, from an
experimentalist’s point of view the exactitude of the RSB solution is not easy to
check since the model still bases its argument on infinite ranged interactions between

spins, which is unrealistic.



3.2.4 Droplet model; the Fisher and Huse approach

Parisi’s replica symmetry breaking solution of the SK model makes the conven-
tional theoretical approach for the questions of spin glasses stay within the mean
field theory. Consequently, most measurements have concentrated on the proper-
ties which are incorporated into the mean field theory, for example, susceptibility.,
specific heat, and resistivity. However, there have been theoretical efforts based on
techniques other than the mean field theory, providing new concepts and predic-
tions of spin glass properties. Such theoretical approaches include the gauge theory
of spin glasses, the hydrodynamic theory of spin waves, the scaling theory, and nu-
merical simulations by Monte Carlo, etc. The details of each approach can be found
in the review paper by Binder and Young [22] as well as the book by Fischer and
Hertz [53]. Here we summarize the most attractive model to us since it provides
the concept of a fundamental length scale for spin glasses. So far this dynamical
length scale has not been observed in experiments, but a possible relationship with
the observation in this study cannot be absolutely excluded.

In 1986 Daniel Fisher and David Huse [55, 56] published a paper in which
they described spin glasses from a completely different point of view; a scaling of
low lying large scale droplet excitations. The interaction in this model is short

ranged, being a nearest-neighbor interaction. The order parameter is still defined
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Figure 3.5: Schematic picture of the droplet model. L is the size scale for a droplet,
in which the spins are aligned as in the ground state ['. From Ref. [55].

in a similar way as the original Edwards-Anderson type,

1
=2 [< 8 >< 5 >a (3.11)

tJj
where < > denote a thermodynamic average within a given state, and [ |q, the
configurational average. Ground states have the property that their energy cannot
be lowered by flipping any finite collection of spins. In an Ising spin glass there
will be certainly at least one pair of ground states, which are symmetric from the
point of view of global spin reversal. Fisher and Huse argued that there is only one
pair of ground states in the spin glass system. Within their argument we denote
one ground state by [, and the other T, obtained from [ by a global spin flip. The
droplet of length scale L is defined as a domain, in which the spins are aligned as
in the ground state . Outside of droplet the spins are aligned as in the ground

state ', which is just the global spin reversed state of T' (See Fig. 3.5).
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The shape of the droplet is complicated, making its surface fractal. For a

droplet of size L, the typical surface area A, is given in the form of
Ap ~ L% (3.12)
The fractal dimension d, in the d-dimensional system satisfies
d-1<ds;<d (3.13)

Bray and Moore calculated the area of a domain wall in small 2-dimensional Ising
spin glass samples, where they find d, =~ 1.3 [29].

The typical droplet free energy Fi in the natural scaling ansatz scales as
Fp~1L° (3.14)

with some exponent 4. § increases with increasing dimensionality d. For d = 1,
§ = —1, while § ~ —0.25 for d = 2, and 6 =~ 0.2 for d = 3 [30, 70, 98]. The upper
limit of @ is set by (d — 1)/2. If 8§ <0, L in the low lying excitation state becomes
longer and longer, thereby destroying the spin glass freezing. Therefore, the spin
glass transition within the droplet model exists only in d = 3. The droplet model
predicts a number of properties of the low frequency dynamics of the spin glass. To
form a droplet of a length scale L, it is necessary to go over a free energy barrier
B, which scales typically as ~ L¥. Here another exponent ¥ is introduced, the
magnitude of which is in the range § < ¢ < d — 1. Therefore, the characteristic

time 7 that a droplet of size L will last is written as

(3.15)

B
7z, ~ Toexp(3—7)
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At high temperature 7, determines the characteristic microscopic time scale at

which a small droplet appears and disappears from the system.

3.3 Length scales in mesoscopic samples

3.8.1 Elastic mean free path, ¢

The concept of this length originates from the Drude model of conduction election
scattering. In the Drude model, the motion of conduction electrons in metals is
analogous to that of neutral molecules in dilute gases. The interactions between
the conduction electrons are ignored, but the interactions between electrons and
ions are taken into account to explain the resistances of metals.

In the Drude model, the relaxation time 7 is given by

r= p;’; (3.16)

where p is resistivity. For Au, 7 =~ 6.0/p, x 10~ sec, where p, is the resistivity
in the unit of uQcm [13]. The pf is a constant depending on metal parameters, so

that the elastic mean free path for Au is expected to be

lau = 8—:2 [A] (3.17)

For Au wires containing a very small amount of magnetic impurities, Eq. 3.17 can
still be used without any modification. For the .\uFe spin glass samples in this

dissertation ¢ determined by this manner was ~ 200 A.
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3.3.2 Phase coherence length, L,

An electron which is understood as a particle in the Drude model actually has a
duality in ius nature, i.e., it s also interpretable as a wave packet, being represented
by ¥ = |y]|e*. Here, @ is referred to as the phase of the electron. The phase
coherence length, L, is the distance that an electron travels before ¢ becomes
uncorrelated with the initial phase, ;. Equivalently, it is defined as the distance
that an electron travels during the time 7, after which the uncertainty in the phase

Ay is of order unit,

Ay ~ é;:'rw ~1 (3.18)

T, is sometimes called as the phase relaxation time. Now let us discuss how an
electron loses its phase memory. The scatterers in metals may be divided into the
following categories; static scatterer and dynamic scatterer. The static scatterer
includes impurities without an internal degree of freedom, and defects in crystal.
When an electron scatters off a static scatterer, the phase change Ay is constant
in time t; Ap(t) = Ap(t + 6t). The electrons even after the scattering process are
still coherent with each other.

Dynamic scatterers include lattice vibrations (electron-phonon scattering) and
electron-electron interactions. The role of the scatterer in the scattering process
varies randomly in time so that there is no stationary relationship between the
phases before and after the scattering event; Ay(t) # Ap(t+6t). Efficiency in ran-

domizing ¢ depends on the characteristics of scatterers. For example, in electron-
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phonon scattering the short wavelength phonons are more effective in destroying
o [6].

Once 7, is known, it is rather straightforward to get the phase coherence length,

L,. One obvious way to do is by setting
L, =vrT, (3.19)

which is analogous to the relationship between the mean free path (¢) and the mean
free time (7). However Eq. 3.19 is valid only in the ballistic scattering regime, where
T, = T, which is often the case with high mobility GaAs/AlGaAs heterostructures.
For disordered metal films or low mobility semiconductors, the motion of electrons
within a distance of order L, is already diffusive; that is 7, > 7. In this case,
Eq. 3.19 is replaced by

L, = D,

where D = %vpé (3.20)

Here, d is the dimensionality of the sample, and D the diffusion constant for elec-
trons.

Finally we would like to point out that impurity scattering can randomize the
phase of electrons if the impurity has an internal degree of freedom. A typical
example is a magnetic impurity in a metal, where the spin moment fluctuates with
time, working as if it were a dynamic scatterer. Therefore, a small amount of

magnetic impurities greatly suppresses L,. For this reason, we normally do not
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consider L, as a relevant length scale in AuFe spin glass wires. For reference, the
estimated L,, for pure Au wires fabricated in our group is typically 3 - 7 um at 0.3

K. This estimate is obtained by fitting a low field magnetoresistance to the weak

localization formula {35].

8.8.3 Thermal length, Lt

If two energy states are correlated with each other, the relative phase  of electrons
in the two states is closely tied to each other. The energy correlation range is given
by the Thouless relation E, = AD/L? [119], where L is the length over which the
correlation extends at a finite temperature T. E. is the order of kg7, giving rise

to a a correlation which extends over a length defined by

hD
Ly = ‘/Eﬁ (3.21)

where D is the electron diffusion constant. Lt is called the thermal length or
Thouless length, being typically(~ 0.27 ym/ VT for the AuFe samples in this study.

Lt is the characteristic length scale which determines the dimensionality of
the electron-electron (EE) interaction contributions to the resistivity of disordered

metals [5]. The importance of the dimensionality of the EE interactions will be

discussed in Section 3.4.2.
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8.8.4 Size of the Kondo screening cloud; the Kondo length

The Kondo effect arises from the screening of the moment of a magnetic impurity
by the conduction electrons in the host metal. As the temperature is decreased, the
screening becomes more effective, leading to a logarithmic increase of the resistance.
Finally, at temperatures far below the Kondo temperature Tk, the magnetic impu-
rity is completely screened. Physically, the screening can be thought of as arising
from a cloud of conduction electrons of dimension £x. Given this physical picture,
one expects that distorting this screening cloud might influence the Kondo effect.
One way to distort the screening cloud is by reducing the sample dimensions. This
idea initiated the series of experiments that were described in Chapter 2.
Dimensional analysis as well as a more rigorous calculation leads to an estimate

of the size of the screening cloud!of the form

ﬁ'l)p

where vp i the Fermi velocity of the host metal. Physically, one can consider the
spin of the conduction electrons in the vicinity of the impurity to be correlated with
the impurity spin for a time i/kgTx. £k is then the distance that an electron at
the Fermi energy with a velocity v travels in this time. For AuFe, with T ~ 1K,
£k ~ 10 pm. In a dirty metal with electrostatic impurities where the motion of the
electron is no longer ballistic but diffusive, this length must be replaced with the
diffusion length W. For our samples, this diffusive length is much shorter,

of the order of 3000 A.
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3.4 Size effect in alloys with dilute magnetic impurities

3.4.1 Finite size dependence in the Kondo effect

Spin-orbit induced magnetic anisotropy in reduced dimensional samples

If a sample becomes smaller than the Kondo screening cloud, the Kondo effect
is expected to be different from that in bulk samples. However, as discussed in
Chapter PreviousWorkChapter, we cannot draw any definite conclusions from the
experiments performed so far for the actual size of the screening cloud, or even for
the very existence of such a Kondo screening cloud [34, 38].

Ujsaghy et al. [121, 122, 123] proposed a theoretical model in attempt to recon-
cile the contrasting experimental results. The background of the model is that the
conduction electrons which interact with magnetic impurities in alloys also interact
with nonmagnetic host atoms through the spin-orbit scattering mechanism. The
spin-orbit scattering can have an anisotropy when the motion of a magnetic impu-
rity moment becomes anisotropic for some reason, for example, due to the effect of
a nearby sample surface. In this case, the amount of the anisotropy should depend
on the volume to surface ratio of samples.

In order to get anisotropic spin-orbit scattering, different angular momentum
channels need to taken into account. If n is an unit vector whose direction is

perpendicular to the surface, the Hamiltonian for the anisotropy is given by

H = K(n-S)? (3.23)
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where S is the spin of the magnetic impurity and K the strength of the anisotropy.

The main body of the paper by Ujsaghy et al. [123] is a calculation of K, which

is a function of the distance of the magnetic impurity d measured from the surface.

K turns out to be proportional to d~!. Several implications of the model have been

made by Ujsaghy et al. [123}, and are summarized here:

1. The Kondo temperature Ty is unchanged for S = 5/2 and 2. For § = 2, the

o

increase in p(T) of thin films is not significantly different from bulk value.
However, for S = 5/2 the situation becomes more complex and the slope in

o(T) is affected.

The Kondo resistivity is reduced by a factor of 1 — 2A¢/t, where Ag is the
effective thickness of a surface layer where the spin-orbit induced anisotropy
suppresses the Kondo effect, and ¢ the film thickness. For AuFe alloys A is
estimated to be approximately 180 A. This explains the experimental result
from the Purdue group [38] that the Kondo resistivity slope decreases as the
thickness of the AuFe film is reduced. When the width (W) of the film is
changed in the regime W >> t, very little change of the spin-orbit induced
anisotropy is expected. This appears to explain more or less the observation
reported by Chandrasekhar et al. [34] that the Kondo effect was not mod-
ified when the linewidth of AuFe wires was reduced [34]. However, for the
narrowest wires measured in that experiment, the width W ~ 38 nm was

comparable to the film thickness ¢ ~ 30 nm, but no suppression of the Kondo
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slope was observed in comparison to the widest wires. Furthermore, the slope
of the Kondo resistivity for the widest samples was the same as for bulk sam-
ples, indicating that the reduced thickness had no effect on the Kondo slope.

Hence, the theory does not fully explain the results of Chandrasekhar et al..

3. If magnetic impurities are covered by a non-magnetic film with a long mean
free path, they do not experience spin-orbit induced anisotropy. Consequently,
the slope of the Kondo resistivity increases, regaining the value in bulk sam-

ples as observed in experiment [24].

4. In a Kondo film covered by an extra layer with short mean free path, the

anisotropy survives near the interface so that the slope of the Kondo resistivity

does not increase significantly as observed in experiment [24].

5. If the Kondo film is covered by materials with negligible spin-orbit interac-
tion, no significant change is expected with regard to the Kondo effect. No

experiments have been performed to confirm this effect yet.

Size effect in the disordered Kondo resistivity

While the spin-orbit induced anisotropy explains many observed properties with
regard to the size effect in the Kondo resistivity, the calculations in the model
assumes that samples are in the clean limit. A few experiments have already focused

on effect of disorder on the Kondo anomaly {23, 25, 86]. With regard to the Kondo
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problem in the presence of disorder, Ivar Martin et al. [96] developed a model to
explain the size effect observed in the experiment of Blachly et al. [23].

The main idea of the model is that weak localization can lead to a finite size
dependence in the Kondo effect. In the paper by Ivar Martin ef al. the correction

to the Kondo resistivity in 2-dimensional films is given by [96]

Ao 4repod 2.3h7?

€
— = 5 ( mka)mTp for Tx < T < k/T0
4 J 1.2R7°
Tr;f)o (l_wmk;z@)lne% for h/TP <« T (3.24)

where 75 and 70 are the nonmagnetic and magnetic scattering times, po the density
of states at the Fermi level, J the exchange interaction, £ the elastic mean free path,
and L the film thickness.

In the concentrated magnetic impurity limit T < k/70, weak localization en-
hances the logarithmic increase in resistivity, as was observed in CuFe alloys in the
impurity concentration range of 0.3 - 2.1 at% [86]. On the other hand, in the dilute

limit T > A/70, the Kondo effect is suppressed as disorder is increased and the

thickness of films is reduced [23].

So far, we have shown that there exist two different models to explain the
size dependence in the Kondo anomaly. Depending on the degree of disorder in
samples, either of the models can be applied. To be more specific, the criterion for
the mechanism given by Ivar Martin et al. to dominate is vp72/k% > 2 min()o, ),

where )¢ is the hindered spin-orbit length [96].
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However, one may note that both models does not take into account electron-
electron interaction contributions properly. Furthermore, the model proposed by
Ivar Martin et al. [96] does not take into account the spin-orbit scattering so that
it is questionable whether their model can be applied to AuFe systems where the

effect of spin-orbit scattering is important.

3.4.2 FElectron-electron interaction contribution to p(T')

In pure Au films, there are three dominant contributions to the resistivity p(7)
at low temperatures. First, there is the phonon contribution at temperatures T’
above ~10 K, which gives rise to a rapid increase in p(T') as T is increased. Second,
there is electron-electron (EE) interaction contribution, and third, a weak localiza-
tion (WL) contribution. The magnitude of the last two contributions essentially
increase as T is reduced, and are dependent on the size of the sample. For quasi
1-dimensional samples, the magnitude of the EE and the WL contributions increase
as the widths of wires are reduced, leading to a qualitative deviation from the p(T’)
of bulk samples.

In alloys containing magnetic impurities, the WL contribution is greatly sup-
pressed due to reduction of the electron coherence length arising from electron
scattering off magnetic impurities [20]. However, the EE interaction contribution
still exists even with magnetic impurities in metals. Thus the EE interaction con-

tribution in quasi 1-dimensional wires should be properly taken into account to see
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whether a size dependence in p(T') actually originates from the fundamental effect
of mesoscopic spin glasses or not.

Normally electron-electron scattering is not expected to affect the resistivity
since it conserves the total momentum of the electron system. Even with the Fermi
liquid corrections, EE scattering does not bring about any essential temperature
dependence of p[5]. However, elastic impurity scattering with EE interactions (the
Coulomb interactions) produces a non-trivial temperature dependence of the elec-
tron density of states and the energy measured at the Fermi level [5]. A correction
in p(T) is thus expected.

There have been many predictions of the scattering time 7. for electrons in
disordered metals. Schmid [111] and Altshuler et al. [9, 10] found a 742 depen-
dence using a transport equation approach. Abrahams et al. [1] obtained the InT
dependence using impurity averaged perturbation theory.

Altshuler et al. obtained a specific functional form for the EE interaction
corrections to p(T') [5]. Since the characteristic times in problems associated with
electron-electron interactions are of the order of T—!, the dimensional crossover

for EE interactions occurs when the sample dimension becomes comparable to

Lt = /AD/kgT. The corrections to the resistivity are given by [5]
Rt

0pee = A1 (—W

_62Rét In kT

22k (h/T)

e2p? 1
A3 m—[’; for d=3 (3.25)

LT for d=1

for d=2
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where W is the width and ¢ the thickness of the film, and 1/7 the total scattering

rate. Rg (= p/t) is the sheet resistance. The numerical values for the coefficients

are given by (5]

4, = —3\/§F(%)<(—%)z1.56
4 = 23y~ 061 (3.26)
3 6 ‘2/°%2/ " ‘

Looking at the sign of A4 carefully, one might notice that the correction to p(T)
grows with decreasing temperature regardless of sample dimension. When electron
screening is taken into account, A, is expected to be modified [5].

As mentioned above, the dimensionality is determined by the length scale L.
At low temperature, the magnitude of Ly can easily be on the order of ~ 1000 A,
which is frequently comparable to the widths of samples. Therefore, the samples
would be in the intermediate regime between 1-dimension and 2-dimension, and the
functional form of Eq. 3.25 is not immediately applicable. To treat this intermediate
regime, we proposed [104] a functional form pd! for the EE interaction correction
for quasi 1-dimensional samples, which is given by

Rit & 1

wh/e*)W n; VA/Lr)2 + (nw/W)? (3:27)

8ple = o

where Ry is the sheet resistance of a film, W the linewidth, and ¢ the film thickness.
« is a numerical constant which takes into account the effect of electron screening.
Eq. 3.27 has been obtained under the assumption that the EE interaction correc-

tion to the conductivity (or, resistivity) in disordered conductors can be calculated
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in a manner analogous to the weak localization correction. We will give a brief

explanation for this scheme in what follows.

The weak localization correction to the conductivity of disordered metals is

given by [59]
2De? dQ
h DQ? —iw

do(w)=— (3.28)

where D is the diffusion constant. Phenomenologically, —iw can be replaced by
1/7, to take into account the effect of finite electron phase coherence [12], and

hence Eq. 3.28 leads to

62

b0 = — L, d=1
e? Ty
= — —_ =2
2m2h ln T d
e 1
= _— - 92
2%k L, ¢=3 (3.29)

For the EE interaction correction an assumption we assume instead that —iw
should be replaced by 1/7r (= (A/ksT)~!) . Then Eq. 3.28 leads to the exactly
the same formula as Eq. 3.29, except that L, is replaced by L, eventually leading

to the same formulae for the resistivity correction as in Eq. 3.25.

In a sample of finite size the integral in Eq. 3.28 is replaced by a sum. Therefore

we write the EE interaction correction formula as follows,

22 1 1
b0 = ———— — 3.30
R IWE o 2, BT B+ QR A L7 (3.30)
where
nmw mm I
Qz=— Qy == Q:=— (331)
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[, m,n are integers, and L, W, t are the sample dimensions. Lt is given by /AD/kgT.
In metal films ¢ is usually much smaller than Lt so that only the [ = 0 contribution

is dominant in the sum. If L >> Ly, we restore the sum to an integral and obtain

_ +00 dQ
o = Z/ Q2+(n7r/l/;)2+L;2

e2l°° 1

W 2 LT G T

(3.32)

Using the relation dp = —do/0?, Eq. 3.32 gives the functional form of the EE

interaction correction for the quasi 1-dimensional sample, expressed in Eq. 3.27.

Since we have justified the functional form in Eq. 3.27, we are ready to use
the EE interaction correction for the quasi 1-dimensional case. In practical appli-
cations of Eq. 3.27 we are only interested in the relative magnitude difference of
the EE interaction correction below the temperature Ty (= 10 K) where p(T') of
spin glass AuFe wires has a minimum. Therefore the magnitude difference of the

EE interaction correction can be expressed as

R2
§p8(T) — 8p%(To) = (_wﬁW

> [ = - = (3.33)

a=0 [\/(1/Lr)? + (nw/W)?  \/(1/Lg,)? + (nm/W)>

The prefactor «, the screening factor, is used as a fitting parameter when the func-
tional form of p3! is used to correct the observed raw p(T') of 1 and 2-dimensional
samples. For a set of samples from a single evaporation the prefactor a should be

the same. We found that o = 1.5 for AuFe spin glass samples in this study. To
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our surprise this value is comparable to the calculated value without any screening
(see Eq. 3.26).

To make the proposed functional form dp% valid, one should reproduce the
same result as dp.. of Eq. 3.25 in the limits of d = 1 and 2. We now show that p3}
properly restores p,. for the 1 and 2-dimensional cases. Since the sum in Eq. 3.27
is actually divergent, we introduce an upper cutoff in the summation. Let us first
consider the l-dimensional limit, where W <« Ly. The term which makes the
dominant contribution to p3! is the n = 0 term. In this case pf, ! can be approximated

as follows:

L, Bt
e (3.34)

Consequently Jpd! is the same as the formula for d = 1 as in Eq. 3.25.
For the 2-dimensional limit (W > Lt ), we cannot ignore the higher order terms
in pl. Using the fact that W >> Lt in 2-dimensional samples, one can replace the

summation by an integral. We show that dpf. restores dpe. for 2-dimensions in

Eq. 3.25, as follows:

ool = fst i -
“ “h]EW = VA/L1)? + (nw/W)?
_ Rt i w

a(wﬁ/e2)W = W\/(LV_ )2 + n?

Rnt /
7rﬁ,/62 W /( W 2+z2
Rt W, T+ \/m + (W/nLr)?
(7rﬁ,/e2)W o W/nLr

Q
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2 p2
o R&t I 2r
22k~ W/nLr
€2R%t .’CBT
= "% R (3.35)

where we have used the assumption that the upper cutoff I' is much bigger than

W/ L. In the last step we replaced [ by W/2rv/ Dr.

3.5 Differential resisiance and thermoelectric effect

3.5.1 Heat flow model in metallic wires; Nagaev’s equation

In normal transport measurements people frequently use a small ac signal as a probe
current. By measuring the response from the sample at the frequency corresponding
to the input ac signal, the linear transport properties of samples are obtained.
Although a small dc signal can be used as a probing excitation, it is generally
not a good idea to use it for the following reasons. First of all, it is very hard
to remove the small dc voltage drift (~ 0.1 — 1xV) which may arise from varying
thermoelectric potential in the measurement circuit. Secondly, the normal circuit
components for the transport measurement contain 1/f noise (also known as pink
noise), which becomes larger at lower frequency [68]. Consequently we used an ac
differential technique in our measurement.

In addition to the advantages described in the previous paragraph, dV/dI can
also be used as a tool to investigate electron heating effects in samples if a dc bias

current [ is superposed on top of the small ac probing current I,.. When I = 0,
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Figure 3.6: 1-dimensional metal wire with a dc current flow. The two electrical
contacts are large so that the electron temperature at the contacts is assumed to
be the same as the bath temperature T}. = represents the position in a wire.

dV/dI just gives the normal resistance R(T). When a dc current I flows through a
metal wire, the external power input I?R supplies an energy input to the electron
system. The conduction electrons heat up and transfer their excess energy to the
environment. Now, an interesting question is how much the electrons are heated up
and what is the temperature of the conduction electrons 7, after the stabilization
of the heat flow. In what follows, we analyze the resulting heat flows in metal wires
and provide a model heat flow equation to predict 7, in metal wires.

T. in a metal normally depends on three factors; the power input by Joule
heating, the power loss through electronic thermal conduction to the electrical
contacts, and the power loss through the electron-phonon interaction. We assume
that phonons in metals are well thermalized to the bath temperature T; of the
silicon substrate. We now discuss these three factors one by one.

Let us assume that a dc bias current I flows through a metal wire of a length

L, as drawn in Fig. 3.6. The power input, P;, of the section with length éz due to
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Joule heating is given by

ox
—_— 2 —
Pr=1I (3.36)

where p is the resistivity, and A the cross section of the metal wire, and z the

position along the wire.

Now let us consider cooling mechanisms. Thermal current flows in a direction
opposite to the temperature gradient, given in the form of —«VT. Here & represents
the thermal conductivity, which is ~ 3.1 watt-cm/K for Au at 273 K [13]. In the

metal wire of Fig. 3.6, the electronic thermal current, P, of the section with length

6z becomes
d 0
Py, = —h:a—z—Te(:z: +déz) + na—zT;(x)
a o)
= '-61'5; (Ka—xTe) (337)

From the law of Wiedemann and Franz within the Sommerfeld approximation, we

find the relationship [13]

AT T (_@.)2 (3.38)
3

By putting Eq. 3.38 into Eq. 3.37, the power transfer P, by electronic thermal

conduction is given by

71'2 kB 21 a 0
——3— (?) ;62:55 ( e‘a—xTe) (3'39)

Another way for hot elecurons to dissipate their energy is through the emectron-

phonon interaction. Electrons lose their excess energy (c.dT’) at the electron-phonon
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scattering rate Te—__lph. Here c. (= «T) is the electronic specific heat for the normal
metal at low temperature. The proportionality constant v ~ w2nk%7T/2eF, being
67.2 J/m3K for Au. Assuming that the phonons in the metal film are at the same
temperature as the substrate temperature, T;, the power transfer P; due to the

electron-phonon interaction is

Te
= cedl poz (3.40)

Ty Te—-ph

Here n is number density of conduction electrons in the metal and €7 the Fermi
energy, which is ~ 5.5 eV for Au.

To get an explicit form for P;, one needs to know the temperature dependence

of 7,%,. The electron-phonon scattering rate 7,_.,,, also depends on T'. The general

functional form of the electron phonon scattering rate Te”_lph can be expressed by [78]

1 o*F(w)
~ | dw .
Te—ph / sinh(fw/kgT) (3.41)

where o? F(w) is the Eliashberg function which is closely related to the details of the
electron phonon scattering process. For a clean metal in the Debye approximation,
a?F(w) is proportional to w?. Hence, electron-phonon scattering rate Te—_lph o< T3 for
kgT < hwp, where wp is the Debye frequency. In the presence of a large number of
impurities, the electron-phonon interaction is modified, giving a deviation from the
T3 dependence discussed above. However, there is no general agreement on the form
of 7,4, in dirty limit. For examples, Keck and Schmid [78] obtained 7e_pn o T4,

e—

while Bergmann (21] and Takayama [117] calculated 7%, o T?. Furthermore, a
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temperature dependence of T._p, Which is not describable by a power law has been
also found in the dirty limit [14].

We use the relation T;lph o T? under the assumption that the samples in this
study are in the clean limit. The justification for the assumption of clean limit is
given as follows. The determination whether our samples are in the clean or the
dirty limit involves some length scale. In the case of the electron-phonon interaction,
the inverse of the phonon wave vector gpn = 4kgT/hv; is a good candidate for a
length scale. Here v, is the sound velocity in the metal, which is ~ 3200 m/sec for
Au. For samples in this study, qp',ll ~ 50 - 100 A, which is smaller than the elastic
mean free path ¢ ~ 200 A, so that the samples are nominally in the clean limit.

Using Te—pr = AT ™3, P; in Eq. 3.40 is rewritten as
1
£7MAGI(TS — T5) (3.42)

Using the fact that the total heat low in and out of the sample is zero; P;—P,—P3 =

0, we finally reach a model heat flow equation:

w2220 9T\ _ 2, WAL 5
3Is:BL 5 (Te el (eIR)* + z (T2 - Ty) (3.43)

Nagaev derived the same result by a sightly different method using a diffusion
equation for the distribution function {101], where the coefficient vAe?L?p/5 was
replaced by 24¢(5)apnL?k%/(ks©p)?(hD). Here ((5) is Riemann’s zeta function,
©p the Debye temperature, and o, electron-phonon coupling constant. The value

of apr (~ 0.415) is obtained from noise thermometry studies for Au films on sil-
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icon substrates [66]. By solving Eq. 3.43 numerically with appropriate boundary
conditions, the profile of T,(z) along the wire for a given dc current flow can be es-
timated. The boundary condition can be as simple as T.(z =0) =T (z = L) =T,
for a single wire as in Fig. 3.6, while more complicated boundary conditions are

expected for a configuration of multiple wires.

Before moving on to the discussion of boundary conditions, we examine the
coupling between the phonons of metals and the phonons in the silicon substrate.
The temperature under our control is not the temperature of the metal film but
the temperature T} of the silicon substrate on which the metal film sits. Let the re-
laxation time 7, represents the characteristic time involved in the coupling between
two systems. If 7, is compared to T._ps, the energy transfer mechanism between
the phonons of the two systems should be seriously taken into account.

Bergmann et al. argued that phonon propagation through the interface be-
tween a metal and a quartz is similar to black-body radiation [16]. Let Uy be the

energy density in the metal film. The energy that escapes through the interface is

given by

4
ar _ ¢ 4 = o (3.44)

it D c

where ¢ is the longitudinal sound velocity, and A, the phonon wave length which
is given by fic/4kgT. Therefore 7, is given by fi/kgT ( ~ 7.6/T x 10~'2 seconds),
which is much smaller than 7,_ps (~ 1/T° x 1077 seconds) at low temperatures.

Therefore, the temperature of the phonons in metals is controlled effectively just
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by controlling the temperature T} of the silicon substrate.

3.5.2 Boundary conditions for Nagaev’s equation

To solve Nagaev’s equation (Eq. 3.43) numerically, we need to know the appropriate
boundary conditions. The boundary conditions usually depend on the geometry of

the samples. Here we just take two geometries which have been frequently used

during the experiments in this study.

Single wire
Figure 3.6 shows the simplest geometry of a sample one may measure, a single
wire without any voltage probes. Both ends of the wire are attached to large

electrical contacts, at which the electron temperature T, is assumed equal to 7.

The boundary condition for this geometry is simply

T(z=0) =T(z=L)=T

or, equivalently

dI.
T.(z=0) =T, and T =0 (3.45)
dz r=L/2

where L is the length of the wire.

With the boundary condition Eq. 3.45, the electron temperature profile T,(z)
of the single metal wire was calculated by Nagaev’s equation at three different dc
currents I = 3, 10, and 40 pA. The parameters used for the coefficients in Nagaev’s

equation are T = 0.45 K, D = 105 cm?/sec, W = 110 nm, L = 35.4 pum, Rg = 1.22
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Figure 3.7: Electron temperature profile, T.(z) of a single metal wire for three
different dc currents I = 3, 10, and 40 pA. The two electrical contacts are large so
that T, at the electrical contact is assumed to be the same as the bath temperature
Ty(= 0.45K). z/L represents the normalized position in the wire.
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Figure 3.8: Schematic of a multi-probe sample. The subscripts v1, v2, ¢, and s
represent the vertical voltage line, the horizontal voltage line, the current line, and
the sample segment, respectively. L represents the length of the lines, and W the
linewidth. The structure consists of one short sample section in the middle and 6

lines which are attached to the sample.

Q, ©p = 170 K, and & = 0.415. The resulting T,(z) is shown in Fig. 3.7. The profile
shows a rapid drop of T, in the vicinity of the electrical contacts, indicating that

cooling by electronic thermal conduction occurs most efficiently near the electrical

contacts.

Multi-probe structure

Figure 3.8 shows a multi-probe structure similar to the multi-probe AuFe wires
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in this study. The subscripts v1, v2, ¢, and s represent the vertical voltage line,
the horizontal voltage line, the current line, and the sample segment, respectively.
L represents the length of the line, and W the width of the line. The structure
consists of one short sample section and 6 lines which are attached to the sample.
Two out of the 6 lines are current carrying lines, the rest four being voltage probes.
For simplicity, we assume that 7, within the sample section does not change with
position, 7.e, T, is assumed fixed at a constant temperature 7.

We have three different equations; one for the current lines, and two more for

the voltage lines. The equations are

o T, k2 .
2 72 e\ _ _ 2 Kp s 5
k’ Lca (T 31:) = (eIR.)* + 1. 3 (T2 - 13)
o) o7,
—kﬁLﬂa (r52) - nvleg, 2 (15, - 1)
15} Ty
Tl (T 52) = g (T - T5) (3.46)

where the dimensionless parameter n. = 24¢(5)apm L2kg©p/hD, and 1,1, nw2 are

defined similarly.

The first boundary condition comes from the fact that T, is equal to T3 at the
electrical contacts:

T(z=0)=Tu(z=0)=Tu(z=0)=T, (3.47)

and the second boundary condition comes from the assumption that T, of the short

sample section is constant:

TC(IL’ = Lc) = Tvl(.’L' = Lv].) = Tv2($ = Lug) = Ts (348)
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Finally the last boundary condition is from the continuity equations for heat flow
at the nodes around the sample. If we use ‘+’ for heat flow out and ‘—’ for heat

flow in, the total heat flow at the node in steady state is given by

ch dTUl dTv2
—kWt=S| = kWit — kW, = :
K Iz, Kot Wit == . Ku2Woat Iz |,_, 0 (3.49)

where k. = n2(kg/e)?0T,./3, and Ky, Ky are defined similarly. ¢ is the thickness of
the metal film. Therefore Eq. 3.49 is rewritten as

dTvI dTv2

dr

dT,
—-W.T. haind
d

- v2Tv2 =0 (350)

- ulTvl

=L, =Ly T=Ly2

Now we have found a complete set of boundary conditions for the structure in
Fig. 3.8.

With the boundary conditions Eqs. 3.47, 3.48, and 3.50, the electron tempera-
ture profile T,(z) of the current line is calculated using Nagaev’s equation (Eq. 3.46)
for three dc currents I = 3, 10, and 40 uA. The parameters used for the coefficients
in Nagaev’s equation are T; = 0.45 K, D = 105 cm?/sec, W, = 110 nm, L. = 15.5
pm, Wy, = 110 nm, L,; = 24.5 pm, Wy, = 60 nm, L,» = 24.5 pm, Rg = 1.22 ),
©p = 170 K, and a = 0.415. The resulting T,(z) of the current line is shown in
Fig. 3.9. The profile shows not only the rapid drop of 7, in the vicinity of the elec-
trical contacts but also a drop at the node where the sample section is connected,

due to the cooling effect of the voltage probes.
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Figure 3.9: Electron temperature profile T,(z) of the current line in the multi-
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electrical contact is assumed to be same as the bath temperature T, (= 0.45 K).
z/ L, represents the normalized position in the current wire.
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3.5.8 Thermoelectric effect in dV/dI(I) measurements

In differential resistance dV/dI(I) measurements at low temperature the major
role of I is heating of the electron system as discussed in Section 3.5.1. There-
fore, dV/dI(I) reflects the behavior of R(T). Furthermore, one would expect a
completely symmetric dV/dI(I) since the heating of a resistive wire by / is inde-
pendent of the direction of I. However, we found {50, 103] that dV/dI(I) of AuFe
wires becomes asymmetric in / when the widths of the voltage probes are differ-
ent from each other, one of the voltage probes being narrower than W ~ 150 nm.
Although a simple electron heating picture cannot explain the asymmetry, the ther-
moelectric effect associated with heating explains the asymmetry in dV/dI(I). As
I heats up the electrons in a sample, two voltage probes work as a thermocouple

and give rise to a finite voltage if the thermopower of the two voltage probes is

different from each other.

Let us consider how an asymmetric dV/dI(I) can be detected when two voltage
probes have different thermopowers, S+ # Sy— (see Fig. 3.10). A dc current I flows
through two current terminals [+ and /—, heating up the short sample section in

the middle of the wire. Then, the total voltage measured between the V+ and V —

electrical contacts is given by

V = IR+ Vay

Tar ()
= IR+ /T (Sor (Te) — Su(Te))dTe (3.51)
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T, ()

Figure 3.10: Schematic of a sample which has an asymmetry in dV/dI(I). If
two voltage probes have different thermopowers (S,+ # S,-), dV/dI(I) becomes

asymmetric in /.
where Tys([) is the electron temperature of the sample section with a dc current /.
By differentiating Eq. 3.51, the antisymmetric part of the differential resistance is

obtained:

DY oo — s, )T
(E;)A—(sv+ 5. (3.52)

Since Ty([) is symmetric in I, dT/dI is antisymmetric in [.

Once T (I) is known, either by a calculation or using a local thermometer, we
can estimate AS(= S, — S,_) between the two voltage probes as a function of Ty,
using Eq. 3.52. If one of the voltage probes has negligible thermopower (S,_ = 0),
the thermopower of the other voltage probe is directly obtained from a dV/dI(I)

measurement. This fact has been found tc be extremely useful for thermopower



measurements at very low temperature [51].
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Chapter 4

EXPERIMENTAL TECHNIQUES

Technical particulars regarding sample fabrications and measurements are dis-
cussed in this chapter. The primary techniques used for fabricating samples in this
study is photolithography and electron beam lithography. We also discuss the low
temperature transport measurement techniques employed in this study.

In Appendix A we list references for chemicals, electronic components, and

measurement apparatus which appear in this chapter.

4.1 Sample fabrication

The samples in this study are basically thin metal films evaporated on top of a
silicon substrate. The silicon substrate actually has an insulating top layer, which
allows us to check the electrical continuity of samples at room temperature.
Structurally, the samples consist of two parts; a big pattern and a small pattern.
The big pattern is on the order of 500 um, and is meant for easy electrical bonding.
The big pattern is also made of the same material as the small patterns. Since it
has a large area, big patterns are fabricated by a photolithographical technique.

Using photolithography we can make many big patterns simuitaneously in a single
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fabrication step. The most essential and delicate part of the sample is made by using
an electron beam lithographical technique. By this technique, we can fabricate a
very narrow metal wires with linewidth ~ 600 A, comparable to the mean free
path. With its flexibility in designing patterns, electron beam lithography is a

reliable technique for the fabrication of mesoscopic samples.

4.1.1 Wafer preparation

The first step in the fabrication process is finding a suitable substrate. All the
substrates used in this study are 0.020” inch thick Si (100) wafers with an oxidized
top layer. The SiO, top layer makes it possible to check the electrical continuity of

samples at room temperature.

The clean surface of the top layer is extremely important since the thickness of
metal film is just a few hundred A. Any small particles on the surface can destroy
the entire sample, and hence a substrate cleaning process is necessary. The following

steps explain the substrate cleaning process which we employed in this study:

1. Clean substrates ultrasonically for 3 minutes in deionized water.
2. Clean substrates ultrasonically for 3 minutes in 2-propanol (‘isopropanol’).
3. Clean substrates ultrasonically for 3 minutes in acetone.

4. Clean substrates ultrasonically for 1 minute in methanol.
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5. Rinse substrates with methanol and blow with dry N, gas immediately.

4.1.2 Photolithography

The following steps outline the photolithographical process which we employed in

this study. The entire process was done in a clean room.

1. Right after the substrate cleaning process, the substrate is spun to coat pho-
toresist. Microposit S1813 Photo Resist was used. Spin speed is 5000 rpm

and spin time is 60 seconds. Thickness of coating layer is approximately 1.1

pm.

2. The substrate is baked in a oven at 90 °C for 30 minutes. This process removes

the solvent in the resist layer, and hardens it. After baking, the substrate is

cooled on a bench top for 10 minutes.

3. The photoresist layer is a single layer, and hence it does not make an undercut
profile after development. An undercut profile makes for better liftoff. To have
an undercut profile, the top surface of the photoresist layer is hardened by

soaking in chlorobenzene for 1 minute.

4. The substrate and a photomask are aligned in a Quintel Q-2001CT mask

aligner. Using 190 watt arc lamp, the photoresist is exposed for 15 seconds.

5. the substrate is immersed in photoresist developer. Microposit MF-319 De-



65
veloper is used. Development normally takes 45 seconds at 20 °C. Right after
developing, the residue of the developer is removed by flushing the substrate

with deionized water.

6. Thin metal films are deposited on the substrate. The detailed metal deposi-

tion process will be discussed in Section 4.1.4.

7. The sample is soaked in acetone for 30 minutes to lift off unwanted metal

parts.

4.1.8 Electron beam lithography

Once the large pattern is made, the most sensitive part, which is on the order of
pm, is made by using electron beam (e-beam) lithography. First, substrates are

re-cleaned in a rather soft way so as not to damage the big pattern.

1. Clean ultrasonically for 30 seconds in acetone.
2. Rinse with deionized water.

3. Flush by acetone.

4. Finally rinse with methanol and blow dry immediately.

Now the substrate is ready to be spin-coated with polymethylmethacrylate
(PMMA). We used a commercial PMMA (NANO PMMA RESIST by Microlithog-

raphy Chemical Corp.), for which the solvent is Anisole. For better liftoff we need
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Exposure with e-beam

PMMA bilayer
Si - substrate
Development
PMMA bilayer
Si - substrate
Metal deposition
Metal
PMMA bilayer
Si - substrate
Liftoff
Metal

—

Si - substrate

Figure 4.1: Fabrication steps of e-beam lithography. Fabrication steps of pho-
tolithgraphy are similar except for the exposure step.
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an undercut profile. To make an undercut, we used bilayer resists of two different

molecular weight PMMA'’s. The heavier weight PMMA is less sensitive to e-beam.

Therefore the lighter weight PMMA (100K) is spun as the first layer, and the heav-

ier weight PMMA (495K) as the second layer. The following steps explain the

processes which are used to make each PMMA layer:

o

PMMA solution is dropped to cover the entire substrate surface.

The substrate is spun at 3000 rpm for the first PMMA layer (7000 rpm for

the second layer). The spin time is 1 minute.

The substrate is baked in an oven for 1 hour at 170 °C. Using a Tencor P-10
surface profiler, we calibrated the resultant thickness of the baked PMMA

layers. The first layer was found to be =~ 1000 A, and the second layer =~ 500

A

Now the small pattern is ready to be exposed by e-beam. The source of e-
beam is a scanning electron microscope (JXA - 840), which is controlled by
the e-beam lithography program written by Professor Venkat Chandrasekhar.
The exposure by e-beam depends on three parameters; magnification of mi-
croscope (Mag), dosage of e-beam exposure (Dos), and beam current (Zeam)-

The typical values of these parameters for submicron scale wires are Mag

~ %2000, Dos ~ 300 uC/cm?, and lpeam ~ 5 PA.
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5. After writing small patterns, the exposed PMMA is removed by a developer.

The developer is a mixture of methyl isobutyl ketone (MIBK) and 2-propanol

with a volume ratio of 1 : 3. The developing time is 45 seconds at 20 °C.

We illustrate these e-beam lithography steps in Fig. 4.1. The steps for metal

deposition and liftoff will be discussed in following sections.

4.1.4 Metal deposition

The third step in Fig. 4.1 is metal deposition. Au (99.999 %) is the primary material
in this study, but other materials such as Ag, Al, Ge have been evaporated for other
studies using the same evaporator (Edwards 306). The chamber of the evaporator
has been kept free of magnetic materials to prevent inadvertent introduction of
magnetic impurities during metal deposition. The base pressure of the evaporator

is normally ~ 3 x10~7 Torr after 5 - 6 hours of pumping.

The actual metal deposition process includes a dry etch step. This cleaning
step is to remove the residual PMMA in developed areas, and was found necessary

for submicron wire fabrication. The detailed process is as follows.

1. The chamber is evacuated until pressure reaches less than 5 x10~7 Torr.

9. Purified Ar gas is introduced to a pressure of 40 x10~3 Torr in the chamber,
and a dc voltage of 1 kV is applied between two plates. Samples are attached

on one of the plates. The distance between the two plates is ~ 2 inches. Ar
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ions bombard and remove the residue of the PMMA resist in exposed areas.

An appropriate time for the dc plasma glow discharge is ~ 30 seconds.

3. The chamber is re-evacuated to get the pressure down to ~ 5 x10~7 Torr

again.

After cleaning by the dc plasma glow discharge, metal depositions are done by
using a thermal boat inside the chamber. Evaporation parameters, ¢.e. the thick-
ness of film and the deposition rate are monitored by a Leybold XTM/2 Deposition
Monitor. The typical film deposition rate ranges from 1 to 10 A/sec. The higher
the deposition rate, the larger the grain size in films, and the longer the mean free

path and phase coherence length obtained.

4.1.5 Liftoff

A metal film covers the entire substrate after the metal deposition process. Un-
wanted parts of the film are removed by a procedure which is called liftoff. By
removing the PMMA, we also remove the unwanted metal film which is on top
of the PMMA. This can be done easily by soaking the substrate in acetone since
PMMA dissolves in acetone easily at room temperature. We normally immerse the
substrate in acetone for 2 hours. When taking out the substrate after 2 hours, we
flush the substrate with acetone to remove fragments of unwanted metal film. Then

we immediately flush the substrate with methanol, and blow it dry.
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Ist implantation | 2nd implantation | 3rd implantation
concentration || energy | dosage energy | dosage energy | dosage
at% keV 103 /cm? | keV 10'*/cm? | keV 10'4/cm?
0.2 20 4.5 60 1.2 90 3.8
0.3 20 6.2 75 6.5
0.4 20 9.0 60 1.8 90 8.1

Table 4.1: Ion implantation energies and dosages for 0.2, 0.3, and 0.4 at% AuFe
spin glasses.

4.1.6 AuFe alloy fabrication

Ion implantation

After Au samples are fabricated, 3°Fe ions are implanted in the Au film at energies
and dosages calculated to give the desired impurity concentrations. Thanks to Pro-
fessor H. Pattyn at Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit
Leuven, Belgium, the ion implantation facilities in Leuven have been used to make
AuFe alloys with Fe concentrations ranging from 0.1 to 0.4 at%. The advantages
of the ion implantation method are that the Fe concentration is not only easily
varied, but is also uniform in its spatial distribution. The implantation energies
and dosages for 0.2, 0.3, and 0.4 at% AuFe spin glasses are given in Table 4.1.
The multiple implantations at 2 or 3 different energies were employed for a more

uniform impurity distribution over the film thickness.
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Flash evaporation

Some of the AuFe samples in this study were made by the flash evaporation
method [126, 128]. The author did not participate in the flash evaporations, but is
indebted to Geert Neuttiens, a colleague in Katholieke Universiteit Leuven, Belgium
for the samples.

For samples presented by flash evaporation, the magnetic impurity concen-
trations are determined by the concentrations of mother alloys. A series of small
droplets of the mother alloy is dropped on top of a hot thermal boat, and is evapo-
rated at a very fast rate. By this way a more uniform concentration can be obtained,
otherwise constituents of the mother alloys with different melting points may seg-
regate during evaporation, resulting in a non uniform impurity distribution in the
films.

AuFe 0.1, 0.28 and 0.85 at% samples were made by this method, and investi-

gated with regard to size dependence in the spin glass resistivity, po(T')-

4.2 Transport measurements at low temperature

4.2.1 Cool-down in helium cryostats

Since spin glass freezing in our AuFe alloys typically occurs below ~10 K, we
need to cool down our samples to liquid helium temperatures ~ 4.2 K. The most
convenient cooling is done in helium cryostats. We used three different types of

cryostats depending on the temperature range; a helium-4 cryostat, a helium-3
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cryostat, and a 3He-*He dilution refrigerator. The helium-4 cryostat, which was
made by the author, can reach T ~ 1.2 K under continuous operation. The helium-
3 cryostat made by Janis Corporation can reach as low as T' ~ 0.26 K, but is not
a continuous system. The 3He-*He dilution refrigerator, an Oxford 300 Kelvinox
is the major work horse in our group, reaching a base temperature of ~ 25 mK
without a booster pump.

The wiring from room temperature to the base temperature block in the cryo-
stat was done by using superconducting wires made of NbTi in a CuNi matrix.
A 7 section filter was installed on each data line to prevent rf noise from being
transmitted to the samples. Samples are mounted on a cold finger which is directly
attached to the base temperature block in each cryostat.

Samples are mounted in such a way that the magnetic field is applied perpen-
dicular to the metal film or substrate surface. The magnetic field is produced by a
superconducting magnet made of NbTi alloy wires. There are two magnets, which

can go up to 6 and 12 Tesla respectively.

4.2.2 Temperature readout, temperature stabilization, magnet control, data acqui-

sition program, and wire bonding

Temperature readout

In cryogenics one of the most essential and basic things is thermometry. Among

many thermometry methods [109], we employed resistance thermometry because of
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its convenience in installation as well as readout. Two types of resistors were used;
a germanium resistor and a RuO, resistor. Both show insulating behavior at low
temperature with the resistance increasing as the temperature is lowered. Although
the resistors are easy to mount and measure, problems are always prevalent with
regard to thermal contact and self heating by the measuring current. Care is needed
to avoid such problems.

To make certain of a good thermal contact, we install the resistors as follows.
We make a copper block (oxygen free copper) and drill a hole in it. The resistor is
placed inside the hole. After placing the resistor, the space around thermometer is
filled with silicon heat sink compound (Dow Corning 340). Once the installation of
the resistor is completed, the copper block is screwed into the mixing chamber of
the dilution refrigerator.

In the helium-4 cryostat and the helium-3 cryostat, a cold finger made of oxygen
free copper is used to hold the sample socket. A hole is directly made in the cold
finger and the resistor is placed inside the hole. The extra room in the hole is filled
with silicon heat sink compound (Dow Corning 340), as described above.

Once the thermometers are installed properly in the cryostat, the next task
is reading the thermometer. For accurate measurements without any self-heating
problems, a low excitation thermometer bridge has been designed and made by the
author. The detailed circuit design of the thermometer bridge is shown in Fig. 4.2.

The bridge is composed of a high output impedance current source, two lock-in
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amplifier chips (AD630), a voltage divider (AD632), and an error signal generator
(AD524). The excitation current through the thermometer is changed depending

on the range of the thermometer resistance. The excitation current for a reading

of 1 kQ resistor is typically 20 nA.

Temperature stabilization

Temperature stabilization is especially essential in dV/dI(I) measurements. Simple
temperature controllers were built in our laboratory, and were found to control the
desired temperature to within 0.1%. Figure 4.3 shows a schematic of the PID
temperature controller we have used in experiments [35].

The temperature controller consists of three parts; proportional (P), integral
(I), differential (D) control unit. When the error signal from the thermometer bridge
is fed into the input of the temperature controller, the output signal is generated by
a summation of the PID components. The appropriate parameters for P, I, and D
are found normally by trial and error, and are sensitive to the temperature range.
Sometimes we want to scan the temperature rather than measure at a constant
temperature. In such case we use Keithley 230 programmable voltage source, which
is directly connected to the heater in the cryostat. A computer controls the Keithley

230 to ramp output voltage, and consequently the input power to the heater ramps

up or down.
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Magnet control

We use two superconducting magnets. One is used with the helium-4 and helium-
3 cryostats and reaches a field of 6 Tesla. The other is used with the dilution
refrigerator and reaches a field of 12 Tesla. The current for the magnets is provided
by a power supply (HP6260B, KEPCO BOP 20-20M, KEPCO BOP 100-1M, or
LakeShore Model 622). The magnitude of the magnetic field is estimated by reading

the magnet current which is proportional to magnetic field.

Data acquisition program

The original data acquisition program was written in Basic by Prof. Chandrasekhar.
The author participated in the translation of the original program into Pascal, and

refined the program to operate more conveniently. The program runs under the

DOS operating system on an IBM PC.

Wire bonding

Samples are glued to sample headers by using silver paint. After the samples are
mounted on the headers, electrical connections between the copper pins in the
heater and electrodes in the samples are made by a wire bonder. A wire bonder
is very dependable machine when electrical connections are made in mesoscopic
samples. The wire bonder used in our laboratory is a Kulicke and Soffa Model 4123

wedge bonder. We used 0.001” diameter Al-Si wires (Si 1%) in the wedge bonder.
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4.2.8 Measurement of low temperature samples

Four-probe ac resistance bridge

The circuit diagram of a four probe ac resistance bridge is shown in Fig. 4.4.
This bridge is a simplified version of the Adler-Jackson bridge [2], and has been
constructed by the author. The original version of the design is found in the Ph.D.
Thesis of Prof. Chandrasekhar [35]. The bridge contains a 1 MQ resistor in each
arm to make a passive current source. The ac drive generated from the internal
oscillator of a lock-in amplifier (PAR 124) is fed into the input of the bridge. The
ac probe excitation is applied through an isolation transformer (Triad G-31), which
prevents any dc offset current from transferring to the sample. All the components
of the bridge are in a single aluminum box which is electrically grounded.

The balance resistor, a GenRad 1432-W Decade Resistor, is located at the
mirror site against sample resistor so that it nulls out the common mode signal.
Since high frequencies tend to give rise to large phase shifts which are picked up
from the inductance of the signal lines, we chose a rather low frequency ranging
from 11 to 300 Hz depending on the sample resistance. With this low frequency,
this simple bridge works with great reliability and sensitivity.

The ac excitation method has the advantage of preventing dc drift during
the measurement, which may cause problems especially when the sample signal is
smaller than the drift. However, the ac response of a sample should be exactly

phased to measure the exact magnitude of the response. The bridge in Fig. 4.4 has
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completed.
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a great advantage in its ease of exact phasing. With this bridge, phasing is simply

accomplished by ensuring that the out-of-phase component does not change when
the balance resistance Ry is changed.

Finally let us consider how the differential resistance (dV/dI(I)) measurements

are set up. With the bridge in Fig. 4.4, the measurement configuration of dV/dI(I)

is really straightforward. It is done by just adding a dc bias current source to the

I+ terminal. Sweeping the dc bias current is achieved using a function generator

(HP3325A, or DS345). We normally sweep the dc bias current as high as £100uA

at a sweep rate of 0.1 mHz. The current source for the dc bias current will be

discussed in following section.

Current source, instrumentation amplifier, voltage summer

We made three general purpose circuit components as parts of a utility circuit
box. The components are a current source, an instrumentation amplifier, and a
voltage summer. The utility box has been found to be extremely convenient for
low temperature transport measurements. Figure 4.5 shows the schematic of the
home-made utility circuit box.

The current source has a very high output impedance (Zoyupue = 1 x 1071392),
and is a nearly perfect current source even with sample source impedances on the
order of ~ 10 k2. We used this bipolar current source to sweep the dc bias current

I for the dV/dI(I) measurements.

The instrumentation amplifier, AD624, is used to monitor [ in dV/dI(I) mea-
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surements. The advantage of the AD624 amplifier includes low offset voltage, low
noise, and precision gain. Therefore it is very useful when the dc bias current

through the sample is read out. The voltage summer has not been used in this

study.

4.3 Sample characterization

4.3.1 Sample dimension

The thickness of the films in this study range from 200 ~ 400 A, nad are comparable
to the mean free path ¢, but are much smaller than the thermal length Lr. To
read the film thickness, we use a film deposition monitor (Leybold XTM/2). The
deposition monitor has been calibrated by a control film, the thickness of which
was determined by a Tencor P-10 surface profiler. Other dimensions such as the

length and width are determined by using a scanning electron microgrape.

4.8.2 Other physical parameters

For metallic wires in the Drude model, the elastic mean free path ¢ is obtained from
the resistivity (see Eq. 3.17). The AuFe samples in this study typically have p, =
3.1 - 4.6 pflem, and hence £ = 180 - 270 A.

Since the dimensions of the samples are normally larger than ¢, the samples

are assumed to be in the diffusive limit. The diffusion constant D is obtained from
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¢ using the equation:

1
D= §’Upe (4.1)

where vg is the Fermi velocity of the conduction electrons in the host metal. Typ-
ically for our AuFe samples, we found D = 85 - 125 cm?/sec. We also found that
D increases as film thickness is increased. The thermal length Lt is obtained from
the value of D, and Ly = 0.25 - 0.31 um/v/T for our AuFe spin glass samples.
The sheet resistance Rg is another useful parameter which describes the quality of
films. Ry is defined by Rg = R x (W/L), where R represents the resistance of a
sample, W the width, and L the length. Rgat T = 4.2 Kis ~ 1 §, i.e., the metal
films are nominally clean. Uhe quality of the metal film is also checked by the fact
that kpf > 1. We estimate kgl (= 220 — 320), which is much larger than 1.

The electron phase coherence length L, is rather unimportant in our AuFe
alloy since L, is greatly suppressed by electron-spin scattering. Furthermore, we

were unable to measure L, by weak localization measurements.



Chapter 5

EXPERIMENTAL RESULTS: SIZE DEPENDENCE IN

THE AUFE SPIN GLASS RESISTIVITY

5.1 A broad resistivity maximum

The electrical resistivity in dilute magnetic impurity alloys shows a logarithmic
increase as the temperature T is lowered, the so-called Kondo effect [85]. The
Kondo effect is caused by the interactions of conduction electrons with isolated
magnetic impurities. The correlations between magnetic impurities are small so
that they do not give rise to spin-spin interactions even at low temperature. If the
concentration of magnetic impurities is gradually increased, the impurities start
to interact with each other, and they are no longer isolated. The system is then
called a ‘spin glass’. Even in concentrated magnetic impurity alloys, when the
thermal energy is larger than the interimpurity interaction, the moments can rotate
freely and give rise to an increasing resistivity as temperature is lowered from the
Kondo effect [90]. However, if T is lowered further, the thermal energy cannot
overcome the interimpurity interactions and the moments start to freeze out. The

freezing of moments modifies electron-spin scattering, and the resistivity p decreases
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as T is lowered. In consequence, the resistivity shows a broad maximum at a
finite temperature T;,. T;, scales with the impurity concentration; the higher the

concentration, the higher T;,, [57].

Although we have measured p(T") of many AuFe wires with various concentra-
tions ranging from 0.1 - 1.0 at%, we will focus only a few of them, which provide
us with the most essential information. Fig. 5.1 shows p(T) for a 0.2 at% AuFe
wire, a 0.4 at% AuFe wire and a pure Au wire. p(T) of the AuFe wires shows a
broad resistivity maximum at a finite temperature T,,. While T}, for the 0.2 at%
AuFe wire is ~ 1.7 K, T, for the 0.4 at% AuFe wire is ~ 3.5 K. As expected,
T, increases with increasing Fe concentration. Both AuFe wires show a minimum
in p(T) at a temperature Tpin = 10.5 K. In contrast, p(T") of the pure Au wire
decreases monotonically as T is lowered, finally saturating below ~ 4.0 K.

There is an important thing to note in Fig. 5.1. For the Kondo samples the
resistivity slope scales as the magnetic impurity concentration; the more concen-
trated the alloys, the more negative the slope (see Section 3.1.1). However, the
resistivity slope in Fig. 5.1 does not reflect this behavior. In the temperature range
between T, and Trnin the resistivity slope of a 0.2 atAuFe wire. This is attributed
to the fact that spin-spin interactions still exist above Tp,, and hence the resistivity
slope is not simply governed by the Kondo effect [89]. Spin-spin interactions, which
are stronger in more concentrated magnetic alloys, mask the manifestation of the

Kondo resistivity. Therefore the resistivity slope of the 0.2 atnegative than that of



86

0.04 L4 1 L] llllll L] L 1 l'l'llll

0.03 = 4.2 at% AuFe 7

0.4 at% AuFe

'0-01 — Au

| i llllll

-0.02 ] L L H Lo b1 1 l L

10

Figure 5.1: Ap(T) (= p(T) — p(10.5K)) of spin glass AuFe wires. The dimensions
of the AuFe wires are W = 135 nm, L = 1.8 um for 0.2 at%, and W = 85 nm, L =
3.5 pum for 0.4 at% alloy. Ap(T) of a pure Au aire is also plotted for comparison,
and its dimensions are W = 115 nm, L = 1.84 ym. The film thickness is identical
for all three wires, ¢t = 330 A. At T = 10.5 K, p = 4.5 uQcm for the 0.2 at% AuFe
wire, 4.6 puQcm for the 0.4 at% AuFe wire, and 6.0 uS2cm for the Au wire.



the 0.4 at% AuFe spin wire.

5.2 p(T) of spin glasses in a finite magnetic field

The properties of spin glasses are highly sensitive to a magnetic field H. For
example, a small magnetic field smears out the sharp ac-susceptibility, destroying
the phenomenon of the spin glass phase transition [33]. p(T) is also affected by
H. As the magnetic field H is increased, the amplitude of the broad maximum in
p(T) decreases, and T,, shifts toward higher temperatures (see Fig. 5.2). p(T) in
Fig. 5.2 is zero field cooled (ZFC), which means that the sample had been cooled
first in zero magnetic field, and then the data were taken at a finite field as T is
increased. There is another way of cooling, which is the so-called field cooling (FC)
technique. The sample is cooled with a finite field and then the data are taken as T
is increased. However, we found no differences between ZFC and FC measurements
of p(T). This observation contrasts with the fact that the magnetization of CuMn
spin glass as a function of temperature shows a clear difference between FC and
ZFC [102]. Magnetic moments in FC samples align their directions during spin
glass freezing, causing an enhancement of the magnetization. However, p(T") is not
sensitive to the relative orientations of spins and is consequently not sensitive to

differences between ZFC and FC.

Previously we argued that T, originates from the interplay of the Kondo effect

and the spin-spin correlation strength A.. In a magnetic field the spin flip scattering
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Figure 5.2: p(T) of a 0.4 at% AuFe wire at various magnetic fields. The dimensions
of the AuFe wire are W = 85 nm, L = 3.5 um, t = 330 A.
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which gives rise to the Kondo effect is greatly suppressed, and hence the temper-
ature T,, shifts toward higher temperatures and the amplitude of the resistivity
maximum decreases as shown in Fig. 5.2. For H = 0 to 1.28 Tesla, we still see a
maximum in p(T). At a magnetic field H = 5.92 Tesla, T}, exceeds the temperature

where electron-phonon scattering is dominant. Therefore, a broad maximum is not

apparent in p(T).

5.3 Absence of a size effect in the spin glass resistivity

Many experiments have focused on the size scale of the Kondo screening cloud,
and have investigated p(T) of dilute magnetic alloys as the dimensions of the alloys
are changed (see Chapter 2). However, the disagreement among the experimental
observations in Kondo alloys has not been resolved as yet. Recently, researchers
have focused on more concentrated magnetic alloys, i.e., spin glasses [87]. Finite
size effects in the spin glass freezing temperature Ty in CuMn spin glass films have
already been investigated [67, 79, 80], and the general consensus is that Ty decreases
as the film thickness is reduced. It was also found that Ty remains finite even at a
1 monolayer [67]. However, a size effect in Ty does not necessarily guarantee a size
effect of the Kondo screening cloud. The screening cloud is a spin correlation of the
conduction electrons around a local magnetic impurity. NMR might be a better
method to probe the electron spin correlation. However, the NMR spectrum for

dilute alloys of CuFe shows no drastic change in the spatial polarization associated
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with the Kondo condensation, rasing the question of whether the Kondo screening
cloud really exists [28].

In this section we report detailed measurements of the resistivity p(T") of thin
AuFe spin glass wires for various widths ranging from 140 nm to 300 zm. The thin
film samples were prepared by flash evaporation. The comparisons are made only
among the samples which were fabricated in the same evaporation. Therefore, the
samples are nominally identical except for their linewidths. AuFe mother alloys
with two different Fe concentrations, 0.28 and 0.85 at%, have been used to make
two sets of samples.

Fig. 5.3(a) shows Ap (T) = p(T) - p(10 K) for a series of 0.28 at% AuFe wire
of different width. The resistivity of these samples at 4.2 K is 9.24 uQcm, and the
corresponding mean free path ¢ ~ 89.3 A. The 300 pm wide wire shows a broad
maximum around 2 K. Taking p(T) of the 300 um wide wire as a reference, p(T") of
the other quasi 1-dimensional wires show systematic deviations in their temperature
dependence. As the width is reduced, the amplitude of Ap(T) increases and Tin
shifts toward lower temperatures.

Fig. 5.4(a) shows Ap (T) = p(T) - p(10 K) for 0.85 at% AuFe wires. The
resistivity at 4.2 K is 11.94 ufdcm, and the corresponding £ =~ 70.4 A. The broad
maximum is located at higher temperatures in this high concentration alloy, and
buried under the contribution from electron-phonon scattering. However, we still

see the size dependence in p(T) at temperatures below ~ 4 K. As similar as 0.28
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Figure 5.3: Ap(T) of 0.28 at% AuFe wires. (a) p(T') — p(10K) of the 0.28 at% AuFe
wires with film thickness ¢ = 220 A and different linewidths. (b)p(T) — p(10K)
after subtracting the electron-electron interaction contribution. From Ref. [104].
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at% AuFe wires, p(T) of the 0.85 at% AuFe wires show a systematic reduction

of spin glass freezing as the width becomes narrower. The amplitude of Ap(T)

increases as the width is reduced.

Both Figs. 5.3(a) and 5.4(b) clearly show a size dependence below the spin
glass freezing temperature. However, before concluding the existence of a size
effect in the spin glass freezing, one has to note that the low temperature resistivity
is also influenced by other factors, for example, the electron-electron interaction
or weak localization contribution. However, weak localization would be greatly
suppressed by the scattering with magnetic impurities. In contrast, the electron-
electron interaction contribution still exists even with magnetic impurities. The
contribution of electron-electron interactions to the resistivity (6pe.) depends on
the size of the samples as shown in Section 3.4.2. For electron-electron interactions,
the thermal length Ly ( = (AD/kgT)"? ) is the appropriate length scale which
determines the dimensionality of dpe.. Lt for the samples in Fig. 5.3 is typically ~
180 nm/ VT, and Lt for the samples in Fig. 5.4 ~ 160 nm/ VT. Lt for both sets of
the samples is comparable to the width of the samples so that the dimensionality
of samples are between 1 and 2. The functional form of dpe(T) for these quasi
1-dimensional samples has been given in Eq. 3.33. We first determine the prefactor
a in Eq. 3.33 by making Ap — dp.e of the narrowest wire falls on top of Ap—ép,. of
the widest wire. The value for both sets of samples is @ = 1.5, which is consistent

with the value of a for Kondo samples [34]. Keeping the value of o same, dpee(T)



94

is subtracted from Ap(T) for the other samples with different widths. After the
subtraction, the resulting Ap(T’) coincide regardless of their width differences as
shown in Fig. 5.3(b) and Fig. 5.4(b). Therefore, no size dependence of the spin

glass resistivity is found down to a length scale of ~ 150 nm.

The absence of size dependence of the spin glass resistivity is consistent with
the previous work by Chandrasekhar et al. [34], which has been discussed in Sec-
tion 2.1.3. They measured p(T") of AuFe wires but for the very dilute Fe impurity
regime, i.e, the Kondo regime. When the EE interaction contribution (dp..) was
subtracted, the resulting p(T) — dp.e Was identical regardless of the linewidths,
which ranged from 38 nm to 105 pm.

However, our result is against the conclusion which was drawn in the paper
by Lane et al. [87]. They measured p(T") of CuCr spin glass films and found the
reduction of the interimpurity interaction A, as the film thickness was reduced
down to 150 A.

Why does such a disagreement occur? One may notice that the difference
between the experiments is the method of varying the dimensions of the samples.
While one varies the linewidth of samples, the other varies the thickness of samples.
The surface-to-volume ratio is not changed appreciably by varying the linewidth,
but the surface-to-volume ratio is changed considerably when the film thickness is
varied. This factor, along with the spin-orbit induced magnetic anisotropy model

by Ujsaghy et al. [123] gives a suggestive explanation for the disagreement in the
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experiments. To check this idea, one needs to measure the resistivity of very narrow
wires of which the linewidth is comparable to the film thickness. If the model is
valid, one will see a cross-over of the size effect when the linewidth becomes smaller

than the film thickness.



Chapter 6

EXPERIMENTAL RESULTS: DIFFERENTIAL
RESISTANCE AS A FUNCTION OF DC BIAS

CURRENT

Resistance may be measured by two different methods depending on the nature
of the probe current. One method utilizes a small dc current, and the other a small
ac current. Both measurements eventually give the same number in the limit of
zero current. In actual experiments, however, the two methods are not same. While
the dc technique is sensitive to drifts which frequently come from the measurement
environment, the ac differential technique is almost free of drift and has a high
resolution. The dc drift typically originates from thermoelectric voltages, and is
thus sensitive to the temperature gradient along signal lines which exist quite often
in low temperature measurements. For this reason we employed the ac differential
technique to measure the transport properties of samples.

While we discussed dV/dI as a function of T in the previous chapter, we will
concentrate on dV/dI as a function of dc bias current I in this chapter. Keeping

all other parameters the same including T, we measure dV/dI as I is swept slowly.

96
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The major role of I in a diffusive metal is heating of the electron system, as we
discussed in Section 3.5.1. Consequently dV/dI(I) would appearto be ralated to the
differential resistance as a function of temperature, dV/dI(T) {88, 137]. However,
it turns out that this is not true for dV/dI(I) in AuFe wires. Even in the simplest
case where dV/dI(I) of a AuFe wire is symmetric in I, a discrepancy is found in the
amplitudes of dV/dI(I) and R(T) which cannot be explained by a simple heating
model. When dV/dI(I) contains a non-zero antisymmetric component [50, 103], the
interpretation becomes more complicated. Here, we extend the study of dV/dI(I)
to heat transport properties, and find something more than dV/dI(T). In the end,

we connect the heat transport of dV/dI(I) with thermoelectric effects.

We found dV/dI(I) of AuFe wires shows qualitatively different behavior de-
pending on the widths of the wires. The critical width found in our measurements
is W = 150 nm. Therefore we divide samples into two categories; the narrow wires
(W < 150 nm) and the wide wires (W > 150 nm). We also found that dV/dI([I)
is sensitive to the 4-terminal measurement configuration. To denote different mea-
surement configurations we shall use the notational convention dV/dI;; i, where 2, j

represents the current terminals and k,! the voltage terminals.

So far we have denoted the bath temperature simply by T since there is no
need to distinguish the electron temperature and the bath temperature. However,

electrons are heated up above the bath temperature when a dc current flows through
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a sample, giving rise to a temperature difference between the electron system and
the bath. To clarify this issue, from now on we shall use T just for the bath

temperature and 7T, for the temperature of the electron system.

6.1 Differential resistance dV/dI(I) of pure Au wires

Figure 6.1(a) shows dV/dI(I) of a Au wire at a bath temperature T = 1.355 K.
dV/dI(I) shows a quadratic increase with increasing I with some fluctuations at
the low bias regime. These fluctuations actually turn out to be very interesting and
will be discussed in a moment.

Figure 6.1(b) shows the antisymmetric part (dV/dI,) of the differential resis-
tance in Fig. 6.1(a), which is extracted numerically. dV/dI4([) is basically just flat
without any curvature, indicating no appreciable dependence of I. This flat line
in dV/dI4(I) looks uninteresting and dull, but turns out to be very important for
checking whether our measurement system gives rise to an artificial asymmetry in
dv/dI(I).

Several other measurements on pure Au wires with widths ranging from 80
nm to 1 pym confirm that dV/dI(I) of Au wires is symmetric (see Fig. 6.2(b))

and the measurement system we employed did not generate any artificial effects in

dv/dI(I).

Now let us discuss further the fluctuations in dV/dI(I). We found that the

fluctuations in the data were not measurement noise but reproducible and the am-
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Figure 6.1: dV/dI(I) of a pure Au wire. The Au wire has W = 117 nm, L = 1.83
pm, and t = 330 A. The measurement was performed at T = 1.355 K
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Figure 6.3: Conductance fluctuations in dV/dI(I) beforeland after warming!up.
The Au wire has W = 96 nm, L = 7.3 um, and ¢ = 330 A. Top seven traces were
taken at T' = 4.43 K one after another, then the sample was heated up to 7.35 K for
the next trace. Finally the sample was re-cooled back to T = 4.43 K. The curves

are shifted for clarity.
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plitudes of the fluctuations decrease as T is increased. To check whether the fluctu-
ations are just restricted to one particular Au wire or not, we measured dV/dI(I)
of another Au wire. Figure 6.2(a) shows dV/dI(I) of a Au wire with a narrower
width ( = 96 nm). We found the fluctuations still exist except that the pattern of
the fluctuations is different. As pointed out before, the fluctuations in dV/dI(I)
of Fig. 6.1 and 6.2 are reproducible as long as samples are kept at the same tem-
perature. A more detailed relationship between the fluctuations and temperature
is shown Fig. 6.3. The figure shows nine different traces of the same Au wire as in
Fig. 6.2. The top seven traces were taken keeping the substrate temperature fixed
at 4.43 K. The seven traces are remarkably similar. As long as the sample is kept at
4.43 K, we found that the shape of the low bias dV/dI(I) did not change even after
a week. But one needs to be careful to get reproducible fluctuations with regard to
applied bias current I. I should not exceed a certain high bias current, over which
the temperature of substrate rises up. We kept / below ~ 300 pA in our samples.

To investigate the effect of temperature, we increased T up to 7.35 K and
took a dV/dI(I) trace. The resulting dV/dI(I) shows a great suppression of the
fluctuations as shown in Fig. 6.3. Finally we re-cooled the sample back to 4.43 K,
and measured dV/dI(I) again. To our surprise, dV/dI(I) then showed a different
pattern compared to the one before heating. Warming to a temperature of 7.35 K

re-arranged the impurity configurations inside the sample.

Similar fluctuations have already been intensively studied in the 1980’s; namely



103
the Altshuler-Lee-Stone theory of Conductance Fluctuations [4, 11, 91, 92]. Con-
ductance fluctuations are found especially in small samples (L < L), where the
conduction electrons retain their phase memories within the sample. The estimate

of the amplitude of the conductance fluctuation dG is given by [4, 11, 91, 92]

G = JKZ-[G]av)zlau

e2/h at T=0K (6.1)

Q

where [ ], represents an average over impurity configurations of a sample. There-
fore, 6G does not scale with sample length [71]. The above estimate for the con-
ductance fluctuation is in good agreement with the experimental data on Au films
(e.g., ~ 0.067¢%/h for the Au wire in Fig. 6.3) [131]. However, it fails to describe
the data from samples in the ballistic regime [42].

6G becomes smaller at higher temperature, first because L, decreases as T'
is increased, and second, because the effect of thermal averaging increases as T is
increased. This explains the observation in Fig. 6.3, but we still need to figure out

the implication of [ |y in dV/dI([) measurements.

Since an impurity configuration is fixed at same low temperature, the measure-
ment of [ ]z, could be a difficult task. One may think of heating up a sample to high
enough temperature to re-arrange the impurity configuration and then cooling it
down again. However, the number of times one has to heat up to get an | ]aw makes

things impossible. There is no way to measure 6G like this. Fortunately there is
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a way to measure [ o, experimentally. According to the ergodic hypothesis [92],
averaging over a finite magnetic field range is equivalent to averaging over impurity
configurations.

The background of this idea is that the effect of a new impurity configuration
can be obtained by randomizing the electron phase with applied magnetic field. In
the presence of magnetic field an electron traveling along the path connecting from
ro to r; will get a phase shift of A¢ = [ A -dr, where A is the vector potential.
Therefore the phase shift depends on magnetic field as well as the traveling path
of the electron. The magnitude of the critical field to have a new impurity config-
uration is given by H. ~ ®o/L2 for a 2-dimensional film and H. ~ ®,/WL, for
1-dimensional wire of width W. Here, ®, is the normal flux quantum hc/e.

Conductance fluctuations have also been found as a function of other measure-
ment parameters; for example as a function of dc bias current in Sb wires [132]
and as a function of the gate voltage in metal oxide semiconductor field effect tran-
sistors {75, 76, 94, 114]. This can be simply understood when one extends the
3-dimensional vector potential A - dr into the four-vector product A,(dz)*, and
hence the phase shift A¢ includes the term of [eVdt/h. Here V is a scalar po-
tential associated with the electric fields in a sample {130]. This agrees with the

observation of conductance fluctuations in our dV/dI(I) measurements.
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6.2 dV/dI(I) of ive probe AuFe wires

6.2.1 dV/dI(I) of wide AuFe wires

dV/dI(I) of spin glass wires at temperatures below the resistance maximum tem-
perature T}, shows a maximum. This maximum resembles the maximum in p(T)
which originates from the interplay of the Kondo effect and spin glass freezing.
Fig. 6.4 shows an example of dV/dI(I) of wide AuFe wires. Fig. 6.4(a) is for a 0.1
at% AuFe wire with W = 250 nm, made by using flash the evaporation technique.
Fig. 6.4(b) is for a 0.4 at% AuFe wire with W = 407 nm made by using ion im-
plantation. dV/dI(I)’s of samples from the two different fabrication methods do
not show any fundamental differences.

T, for these samples are 2.5 and 3.5 K respectively, and scale with the impu-
rity concentration. In both cases we find that dV/dI(I) is completely symmetric
in the bias current I. The symmetric dV/dI(I)’s are consistent with a simple elec-
tron heating picture [88]. I heats an electron system equivalently regardless of its
direction so that the resulting dV/dI(I) is symmetric in I. Such dV/dI(I) curves
now should be comparable to R(T') since I basically functions as a heater of the
electron system. Fig. 6.5 shows the comparison between dV/dI(I) and R(T) of a
0.1 at% AuFe wire. A simple linear scaling gives a nice match between two curves
except for the mismatch in the amplitudes. The amplitude of dV/dI(I) is larger

than that of R(T"). The enhanced amplitude of dV/dI(I) will be discussed in detail



106

0.03 T T T T T T T

0.1 at% AuFe
0.02 |-

10 20 30 40

0.1 L. 04at%AuFe (b) _

0.08 p- -
0.06 |- —

0.04 - -

dv/dl (Q)

0.02 |- -

_0-02 1 1 1 I 1

-200 -100 0
| (uA)

100 200

Figure 6.4: dV/dI(I) of wide AuFe wires. (a) dV/dI(I) of a 0.1 at% AuFe wire
with W = 250 nm, L = 10.59 ym, and ¢t = 225 A. The measurement was performed
at T = 1.314 K, and dV/dI(0) = 135.1 Q. (b) dV/dI(I) of a 0.4 at% AuFe wire
with W = 407 nm, L = 11.38 um, and ¢t = 330 A. The measurement was performed
at T = 1.235 K, and dV/dI(0) = 26.75 Q.
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in Section 6.4.4.

Although Fig. 6.4 does not show the high current bias regime, dV/dI(I) will
eventually increase as I is increased, influenced by the phonon contribution which

is also found in p(T") at high temperature.

6.2.2 dV/dI(I) of narrow AuFe wires

Electron heating is the dominant contribution to the nonlinear behavior of dV/dI(I)
of a wide AuFe wire. However, we found that there is another contribution in nar-
row AuFe wires. Figure 6.6 shows dV/dI(I) of narrow AuFe wires in two different
concentrations, 0.2 and 0.4 at%. Both samples were made by ion implantation.
The widths of the wires are 85 and 135 nm, respectively. The resistance at 4.2 K
of the 0.2 at% sample is 17.7 €2, the 0.4 at% sample 57.5 2. The measurement
environment was identical to that for the wide AuFe wires, and the temperature T
was fixed below T;,. As is clear in Fig. 6.6(a) dV/dI(I)’s of narrow AuFe wires is
asymmetric in I. The asymmetry is more evident when the antisymmetric part of
the differential resistance dV/dI4(I) is examined. dV/dI4(I) is obtained numeri-
cally from dV/dI(I) and is drawn in Fig. 6.6(b). dV/dI4(I) shows a clear step-like
anomaly near zero dc bias current.

This anomaly is a rather surprising result since dV/dI4(I) of the narrow Au
wire in Fig. 6.1 does not contain any antisymmetric part. The asymmetry must

be associated with the presence of magnetic impurities in the sample. To clarify
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Figure 6.6: dV/dI(I) of narrow AuFe wires. (a) dV/dI(I) of a 0.4 at% AuFe wire
with W = 85 nm, L = 3.5 um, and ¢t = 330 A. The measurement was performed
at T = 1.705 K (b) dV/dI(I) of a 0.2 at% AuFe wire with W = 135 nm, L = 1.8
pm, and t = 330 A. The measurement was performed at T = 0.051 K. The plots

- are shifted for clarity.
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Figure 6.8: dV/dI(I) of a narrow 0.2 at% AuFe wire at various temperatures. The
dimension of the wire is W = 135 nm, L = 1.8 um, and t = 330 A. The temperature
dependence shows behavior similar to a narrow 0.4 at% AuFe wire. The asymmetry
in dV/dI(I) at low temperature gradually decreases at higi temperature.
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Figure 6.9: dV/dIs(I) of a narrow 0.2 at% AuFe wire at various temperatures.
dV/dI, is numerically extracted from dV/dI(I) in Fig. 6.8.
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the relationship with the magnetic impurities present in the samples, we measured
dV/dI(I) of the narrow AuFe wire at various temperatures. Fig. 6.7 shows dV/dI(I)
of a narrow 0.4 at% AuFe wire at six different temperatures T. As T is increased
above T}, the maximum in dV/dI(I) disappears, and the asymmetry of dV/dI(I)
also disappears gradually, vanishing completely at T' = 16.08 K.

Similarly, dV/dI(I) of a 0.2 at% AuFe wire with W = 135 nm was measured
at various fixed temperatures. The temperature dependence of the asymmetric
dV/dI(I) resembles that of the narrow 0.4 at% wire. As T is increased, the asym-
metry in dV/dI(I) gradually disappears. The asymmetry as a function of bath
temperature T can be seen more clearly if the antisymmetric part of dV/dI([)
is examined. The resulting dV/dI4(I)’s at various T’s are shown in Fig. 6.9. The
step-like dV/dI4(I) at low temperatures gradually disappears at high temperatures.
To obtain quantitative estimates of the asymmetry, we integrate the antisymmet-
ric part from 0 to 30 pA. This quantitative result of the integration is named as
asymmetry. The resulting asymmetry is shown in Fig. 6.10. The asymmetry grows
by more than an order of magnitude as T is decreased from 10 K down to 2.5 K.
and saturates below T, = 2.5 K. The saturation temperature, Ty, is comparable
to T,, of this sample (see Fig. 5.1). However. the saturation temperature, Tiq,;.
obtained by this analysis is dependent on the range of integration, presumably due
to electron heating at high current bias. Reducing the integration range lowers

the saturation temperature by about 10 - 20 %, but the increased scatter in the
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data also increases the uncertainty in determining the saturation temperature by
approximately the same amount. Consequently, we have chosen the integration
range small enough to minimize the effect of heating, but large enough to reduce

the scatter in the data to an acceptable level.

6.2.3 Effect of magnetic field on the asymmetry in dV/dI(I)

Spin glass freezing is sensitive to magnetic field. From the theoretical point of view,
a magnetic field destroys the spin glass phase transition [82], which is consistent
with the experimental observation that a sharp cusp-like ac susceptibility at 7.
becomes flattened out in a finite field [81]. We have already examined the field
dependence of p(T') in Section 5.2. The resistivity maximum moves up to higher
temperatures and the amplitude of the maximum decreases as the magnetic field
H is increased.

A magnetic field affects dV/dI(I) of spin glass wires as well. The maximum in
dV/dI(I) shifts towards higher bias currents as H is increased (see Fig. 6.11). At
the highest applied magnetic field of 5.92 Tesla, the maximum is buried completely
under the differential resistance of the high bias current regime. If one looks only at
Fig. 6.11, the asymmetry in dV/dI([) appears to be reduced with H, vanishing at
H = 5.92 Tesla. However, it turns out that this is just an illusion. dV/dI4(I) still
shows a clear zero bias anomaly at high fields, as is shown in Fig. 6.12. Actually,

the magnitude of the peak in dV/dI4(I) increases as H is increased.
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Figure 6.11: dV/dI(I) of a narrow 0.4 at% AuFe AuFe wire at various magnetic
fields. The dimension of the sample is W = 85 nm, L = 3.5 um, and ¢t = 330 A.
The bath temperature is fixed at T = 1.28 K for all three fields. The maximum
moves to higher bias currents as the magnetic field is increased.
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Figure 6.12: dV/dI4(I) of a narrow 0.4 at% AuFe wire at various magnetic fields.

dV/dI4(I) was extracted from dV/dI(I) in Fig. 6.11.
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We already know that as T is lowered the asymmetry of a narrow 0.2 at% AuFe
wire gradually grows and saturates at a temperature which is comparable to the
resistivity maximum temperature (see Fig. 6.10). The measurement in Fig. 6.10 was
done in zero magnetic field. One might want to know about the effect of magnetic
field on the asymmetry.

To answer this issue, we performed dV/dI(I) measurements as a function of
temperature at three different magnetic fields H = 0, 1.28, and 5.92 Tesla. For each
field dV/dI(I) at a variety of different bath temperatures have been measured. and
finally the asymmetry was estimated as a function of T. The resulting asymmetry
has been shown in Fig. 6.13. The asymmetry increases as H is increased up to
~ 6 Tesla (We will discuss the results for higher field in Section 6.2.4), while the
saturation temperature of the asymmetry does not move with A. This fact can be
seen more clearly if the normalized asymmetry is drawn as a function of T. The
Inset of Fig. 6.13 shows the normalized asymmetry as a function of T. All three
curves at different magnetic fields collapse onto a single functional curve, clearly

indicating that the saturation temperature is independent of H.

6.2.4 Sensitivity of dV/dI(I) sensitive to the four-terminal measurement configu-

ration

As many meastrements have indicated, a sensitivity to the four-terminal measure-

ment configuration is a hallmark of mesoscopic systems [15, 36]. The condition to



120
observe such an effect is that the size of a sample should be less than the phase
coherence length. Benoit et al. [15] noted that the four terminal magnetic field
dependent conductance G(H) of small metallic wires and loops was asymmetric in
H and sensitive to the configuration of current and voltage contacts, even though
classically the same sample was being measured. Buttiker [31] explained this as a
consequence of the mixing of diagonal and off-diagonal components of the conduc-
tance in a four terminal phase coherent sample.

To test the possibility that such quantum interference effects may still survive
in our samples, we performed dV/dI([) measurements as we changed the four-
terminal measurement configuration.

Fig. 6.14 shows the resulting dV/dI(I) of a narrow 0.4 at% AuFe wire for four
different measurement configurations. For all four configurations the samples are
identical from the classical point of view, and the direction of dc bias current /
is also identical. Hence, one expects the same dV/dI(I) for each configuration.
However, we found the resulting dV/dI(I) is sensitive to the four-terminal measure-
ment configuration. None of the curves show the same asymmetry. However, the
symmetric parts of these four curves are found to be the same.

A similar sensitivity of the asymmetry to the four-terminal measurement con-
figurations has been found in many other AuFe spin glass wires with narrow widths.
However, the polarity of the asymmetry as well as the magnitude are different from

sample to sample even if the four-terminal measurement configuration is the same.
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Figure 6.14: dV/dI([) for four different measurement configurations at T' = 1.56
K. The narrow 0.4 at% AuFe wire has W = 85 nm, L = 3.5 um, and ¢t = 330 A.
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Figure 6.15: dV/dI(I) for four different measurement configurations at zero mag-
netic field. The narrow 0.4 at% AuFe wire has W = 80 nm, L = 3.7 um, and t =

330 A. T = 106 mK.
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Figure 6.16: dV/dI4([) for four different measurement configurations at zero mag-
netic field. dV/dI4(I) is numerically obtained from dV/dI(I) in Fig. 6.15.



124

42 L] L L] L} ¥ 42 L4 L] ¥ L4 L]
415 | 415
—
<}
§ 41t 41
>
o
405 | 405 |
40 L L 1 40 1L N 1
-60 -40 -20 0 20 40 60 -60 -40 20 o] 20 40 60
42 L L T L] L] 42 LS LY L3 T L
415 | -

I+ V-
40.5 + - Ve I J
dvrd,, .
40 — L .  —— 40 : s . 1 =
-60 -40 -20 [s] 20 40 60 60 -40 -20 0 20 40 60
I (uA) [ (uA)
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Figure 6.18: dV/dI(I) for four different measurement configurations at H = 11.9
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Since spin glasses are easily affected by magnetic field, one may expect that
the magnetic field affects the sensitivity of dV/dI(I) to measurement configuration.
We want to know whether dV/dI4(I) for each configuration is sensitive to magnetic
field.

To answer this question we first measured dV/dI(I) of a narrow 0.4 at% AuFe
wire at zero magnetic field (See Fig. 6.15). The corresponding antisymmetric part,
dV/dI, is plotted in Fig. 6.16. As expected, each configuration gives a different
asymmetry. After this measurement we applied a magnetic field (11.9 Tesla) per-
pendicular to the sample and dV/dI(I) for each configuration was measured. The
resulting dV/dI(I)’s are shown in Fig 6.17 and the corresponding antisymmetric
parts are shown in Fig. 6.18. To our surprise the polarity of asymmetry is rather
robust even in such a high magnetic field and is the same for all four different
configurations. The magnitude of the asymmetry is also more or less the same as
before applying the magnetic field.

To see in more detail the dependence of the asymmetry on the magnetic field,
we took two traces of dV/dI at I = +5 and -5 pA as a function of A and extracted

the antisymmetric part of dV/dIs,4(H) numerically. Specifically,

dv 11dV
(), =3 [g,—

The resulting dV/dI4(H) is been shown in Fig. 6.19. The field dependence of

av

(H)—E

I=5pA

(H )] (6.2)

I==5uA

dV/dI4(H) is not monotonic. The asymmetry increases with H in the field regime

below 6 Tesla, while the asymmetry decreases with H in the field regime above 6
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Tesla. This result provides evidence for the fact that the origin of the antisym-
metric part of dV/dI(I) is different from the origin of the resistivity of the sample.
Remember that the resistivity maximum temperature just shows monotonic be-
havior in its magnetic field dependence, as shown in Fig. 5.2. The origin of the

antisymmetric part of dV/dI(I) will be discussed in a later section.

6.2.5 Is the asymmetry in dV/dI(I) a quantum interference effect?

The origin of quantum interference effects in condensed matter lies in the phases
of electrons (or holes). In mesoscopic samples where the electron phase coherently
contributes to the transport properties, quantum interference effects reveal them-
selves in the magnetoresistance, or conductance as a function of gate potential,
etc. The important properties of these interference effects include the facts that (1)
they are sample specific and sensitive to the detailed impurity configuration, and
(2) they are non-additive in a classical way, 7.e., the phase plays an important role.

dV/dI(I) of narrow AuFe wires looks like a quantum interference effect in
the sense that the asymmetries in dV/dI(I) are sample specific and sensitive to
probe configurations. However, we still need to check the second property listed
above before we conclude that dV/dI(I) of AuFe spin glass wires is a quantum
interference effect. Usually quantum interference effects are defined by certain
fundamental length scales. L, and Ly are good examples of such fundamental

length scales. Due to these properties, most quantum interference effects are not
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Figure 6.20: dV/dI(I)’s of consecutive sections. The narrow AuFe 0.4 at% wire
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additive in a classical way. It is worthwhile to check whether these aspects of
quantum interference phenomena are observable in the dV/dI(I) of narrow AuFe
wires.

Fig. 6.20 answers the above issue. In a five-probe AuFe wire we measured
dV/dI(I)’s of consecutive sections and checked whether dV/dI(I) is additive. It
turns out that dV/dI(I)’s of two consecutive sections are exactly additive. The
numerical sum of the differential resistances of two consecutive sections (dV/dI 352+
dV/dI1324) is identical to the differential resistance of the entire section (dV/dI 354)-
The dV/dI(I)’s are additive in a classical way.

Further evidence against the possibility of quantum interference effects in
dV/dI(I) is found in the fact that the asymmetry is rather insensitive to the de-
tailed microscopic spin configuration. The spins in a magnetic alloy freeze at the
spin glass transition, but the microscopic configuration of the frozen spins changes
at each cooling. This fact has been demonstrated [44] by the phenomena of the
magnetofingerprint. The detailed pattern of the magnetoresistance as a function
of field changes at each different cool-down. However, dV/dI(I) of a narrow AuFe
wire does not change even after several thermal cyclings from room temperature to
liquid helium temperature. Consequently we believe the asymmetry in dV, /dI(I) is

not a quantum interference effect.
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6.2.6 Asymmetry saturation temperature for different configurations

In this short section we are going to show the temperature dependence of the asym-
metry for different measurement configurations. Fig. 6.21 shows the asymmetry as
a function of temperature for two different configurations dV/dIl 453 and dV/ /dIs3.14.
The sample is the same as the one in Fig. 6.15. The measured section is classically
the same, but dV/dI(I) shows a different asymmetry as shown in Fig. 6.16. The
asymmetry in dV/dI4 53 is larger than that in dV/dIs3 4. However, we found rather
interesting property for the temperature where the asymmetry saturates. The sat-

uration of the asymmetry occurs almost at the same temperature ~ 2 K for both

configurations.

6.2.7 Searching for the origin of the asymmetry

What is the origin of the asymmetry in dV/dI(I)? We have shown it is clearly
associated with the presence of magnetic impurities in samples. One possibility is
that this phenomenon may be related to the enhanced thermopower in magnetic
alloys [97]. In what follows, we justify that the thermopower of AuFe alloys is the
origin of the asymmetry in dV/dI(I).

The voltage V(I) across a sample can be expanded in a Taylor series with

terms symmetric in I and terms antisymmetric in I:
V(I)=RI+RyI?* + Ry P + RyI* + ... (6.3)

The symmetric terms in V(I) actually give rise to the antisymmetric terms in
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dv/dI(I).
Now let us think about the origin of the even order terms in Eq. 6.3 in view of
thermoelectric effects. When a temperature difference AT = T) —T;, exists along a

sample, the thermoelectric voltage developed between points 1 and 2 is given by
T2
Vin = / SdT (6.4)
T

where S represents thermopower of the sample. As we stated in Section 3.5.3,
Vin contributes to the antisymmetric part of dV/dI(I). To check this idea ex-
perimentally we measured dV/dI(I) of a heterogeneous sample, which has a large
thermopower difference between two voltage terminals. The heterogeneous sample
consists of a five probe AuFe 0.4 at% wire and a 1 pm width Ge/Au wire, which
is made of 50 A thick Ge layer and 250 A thick Au layer. Ge/Au is metallic with
this thickness ratio, and is expected to have a small thermopower compared to
AuFe alloys [41]. Fig 6.22(a) shows the structure of the heterogeneous sample. The
terminal 3 is a line made of Ge/Au, and the other terminals are 0.4 at% AuFe wire
with ~ 1 gm width. Fig 6.22(b) shows the differential resistance as a function of [
for the configuration dV/dIs; 35. One of the two voltage terminals is made of Auke
alloy and the other Ge/Au. dV/dI is clearly asymmetric in I, which is due to the
fact that the thermopower of AuFe is large [97] while that of Ge/Au is small [41].

Now we exchange the [+ and V+ terminals in the configuration dV/dla; 34
Classically this terminal exchange is not expected to cause any difference since the

measured section is still the same as before. However, dV/dI3; 24 have no asym-
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metry (Fig 6.22(c)). This is consistent with the fact that thermoelectric voltage
is zero when two voltage terminals have the same thermopower regardless of the
magnitude of the absolute thermopower. We finally conclude that the difference of
the thermopower of two voltage terminals gives rise to the asymmetry in dV/dI(I).

In addition we demonstrate that the symmetric part of dV/dI(I) does not
depend on a four-terminal measurement configuration (see Fig. 6.22(c)). The sym-
metric part of dV/dls; 34, which is numerically extracted from dV/dls; 34(I) in
Fig. 6.22(b), is identical to dV/dI;; 24(]). This confirms that only the antisymmet-

ric part of the differential resistance is sensitive to the four-terminal measurement

configuration.

6.3 dV/dI(I) of multi-probe 0.3 at% AuFe wires

In the previous section, we reached the conclusion that the observed asymmetry in
dV/dI(I) is closely related to a thermoelectric voltage, which originates from the
thermopower difference between two voltage terminals. However, this conclusion
puzzles us because a narrow AuFe wire, the terminals of which are essentially made
of identical material (AuFe), should not give rise to thermoelectric voltage. There
must be something more in narrow AuFe wires to explain the observed asymmetry.
First of all, we have to answer the question why the asymmetry in dV/dI(I) is
found only in narrow samples. The second question regards the sample length. So

far narrow samples normally have short length less than ~ 5 um. Is sample length
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Figure 6.22: Asymmetric dV/dI(I) of a heterogeneous wire. (a) On top of a 5
probe 0.4 at% AuFe wire (W =1 pym, t = 330 R), an Ge/Au line was made by
SEM lithography and thermal evaporation. Width of the line is ~ 1 pm, and the
thickness of the line 300 A (Ge = 50 A and Au = 250 A). The distance between
contacts 3 and 4 is ~ 15.7um. (b) dV/dIz 34(I) at T = 1.36 K. (c) Comparison
between dV/dI3;24(I) at T = 1.36 K and the symmetric part of dV/d I 34(I).
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also important?
To address this question, we made multi probe samples which can be studied
for various measurement configurations as well as various sample lengths. The
SEM micrograph of one of typical samples is shown in Fig 6.23. The horizontal line

(W = 60 nm) is usually narrower than the vertical lines (W ~ 110 nm).

6.3.1 dV/dI.(I) sensitive to the width difference of two voltage probes

The first task we want to figure out was the question regarding the length de-
pendence of the asymmetry in the dV/dI(I) of narrow AuFe wires. We measured
sample sections with various lengths from 1.5 to 28 pum. Fig. 6.24(a) shows the
measurement configurations, by which dV/dI(I)’s for the different lengths were
measured. To change the sample length from 1.5 to 8.5 um, we move only /—.
keeping the other terminals the same. Only for the 28 ym length we moved the
V+ terminal to the far end. The reason why we are so careful about choosing
terminals is that the asymmetry depends on the specific measurement configura-
tion. One should try to keep the configuration the same as much as possible in
four-terminal measurement configurations. The resulting dV/dI4(I) is shown in
Fig. 6.24(b), which clearly demonstrates that dV/dIa(I) is independent of sample
length. This result confirms that the width of the wires plays the most important
role in dV/dI(I).

The second task was to figure out the importance of the four-terminal mea-
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Figure 6.23: SEM micrograph of a typical 0.3 at% AuFe sample. The horizontal
line (W = 60 nm) is usually narrower than the vertical lines (W =~ 110 nm). The
film thickness is 303 A.
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Figure 6.26: dV/dI4(I) of a 0.3 at% AuFe wire for various measurement configura-
tions. Inset to each panel illustrates the specific terminal configuration. dV/dl4(I)
is numerically obtained from dV/dI(I) in Fig. 6.25.
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surement configuration. Fig. 6.25 shows dV/dI(I) of a 0.3 at% AuFe wire for four
different measurement configurations. The corresponding dV/dI, are shown in
Fig. 6.26. The polarity and magnitude of the asymmetry depend on the measure-
ment configuration. Each configuration measures the same section of the sample,
and dc bias current flows in the same direction in each configuration.

Now let us discuss the detailed features of dV/dI4(I) in Fig. 6.26. The inset to
each figure illustrates the measurement configuration. In Fig. 6.26(a) current flows
from one of the vertical lines to the other vertical line, and the two voltage probes
are vertical lines. In this configuration dV/dI([) is symmetric in /. In Fig. 6.26(b)
we moved one of the current probes (I+) to the horizontal line, keeping other three
probes the same as in Fig. 6.26(a). The resulting dV/dI4(I) does not show any
major difference from that of Fig. 6.26(a), indicating that the current probe does
not influence the asymmetry in dV/dI(I).

In Fig. 6.26(c) we moved one of voltage probes (V+) to the narrow horizontal
line, keeping other three probes the same as in Fig. 6.26(a). Then a large asymmetry
develops as shown in Fig. 6.26(c). When the V — probe instead of the V+ probe was
moved to the narrow horizontal line (see Fig. 6.25(d)), a large asymmetry develops
but had the opposite polarity compared to dV/dI4(I) in Fig. 6.26(c). Noting the
results in Fig. 6.26 and the fact that the vertical lines are wider than the horizontal

line, we make a few statements with regard to dV/dI(I).

e Non-zero dV/dI4(I) of a AuFe spin glass wire is observed only when two
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voltage probes have different widths from each other. However, the critical
width to see a non-zero dV/dI4(I) is ~ 150 nm. When the width of both
voltage terminals is larger than this, no appreciable asymmetry is observed.
Therefore one of voltage terminals should have a width less than 150 nm to

have a non-zero dV/dI4(I).

e The polarity of dV/dI4(I) is governed by the relation between the widths of
two voltage probes. When the width of the V+ probe is narrower (wider)

than that of the V— probe, dV/dI4(I) has a positive (negative) polarity.

e [t turns out that the asymmetry in dV/dI(I) of narrow 0.2 at% AuFe wires
is also explained by the above statements. The normal SEM lithographical
technique can frequently give rise to the variation in the linewidth of order
~ 10 nm. This lithographical variation is the main reason for the previously

observed asymmetry in dV/dI(I) of very narrow wires.

These statements are very general and have been found valid in any arbitrary

combination of measurement probes as well as in other multi probe samples.

6.3.2 Asymmetry as a function of temperature

Previously dV/dI4(I) of narrow AuFe 0.2 and 0.4 at% wires were found to be
dependent on the temperature T. The amplitude of dV/dI4(I) increases as T is

lowered, saturating below 1 ~ 2 K. We found a very similar behavior in dV/dI4(I)
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Figure 6.27: dV/dIs(I) of a 0.3 at% AuFe wire for various temperatures. The
width of vertical wires is 110 nm, the width of horizontal wire 60 nm. L = 2um, ¢
= 303 A. Inset: the 4-terminal measurement configuration used here.
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of a2 0.3 at% AuFe wire. The step-like zero bias anomaly in dV/dI,(I) at T = 0.45

K diminishes as T is increased, finally becoming flat above T" = 4 K (see Fig. 6.27).

6.4 Thermopower of AuFe mesoscopic spin glass wires

As discussed in Section 3.5, the nontrivial dV/dI,(I) is attributed to a thermoelec-
tric voltage, which originates from two voltage wires with different thermopower.
In the case of AuFe wires, how can two voltage wires have different thermopowers?
Thermopower for a normal metal is given by Eq. 3.3, and is very sensitive to dp/0¢
at the Fermi level. It is generally true that p(e) of bulk does not depend on the size
of a sample. However, p(e) can be sensitive when the sample size becomes compa-
rable to same fundamental microscopic length scale, for example, Lr, or L, [5]. By
the same token one might expect a size dependence of dp/0c at the Fermi level.
Consequently it is reasonable to consider a size effect of thermopower in mesoscopic

metal wires. From the statements which have been drawn in Section 6.3.1, we can

make following statements:

e The thermopower of a AuFe spin glass wire depends on the width of the wire

if it is lower than W = 150 nm.

e The magnitude of the thermopower of a AuFe spin glass wire decreases as the

width of the wire is reduced.
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Now, we are going to estimate the thermopower difference (AS) between two
voltage probes, one of which has W = 110 nm, and the other W = 60 nm. The
estimation of thermopower requires a calculation of the electron temperature profile
in a sample wire. In the following section we calculate the electron temperature
profile in a sample with a dc bias current flow and then discuss the thermopower

of mesoscopic AuFe spin glasses.

6.4.1 Electron temperature of a sample wire

First of all we simplified the sample structure shown in Fig. 6.23 to simplify the
calculation. The simplified structure has 6 probes around a short sample section,
which has been already fully studied in Section 3.5.2. The simplified structure is
exactly same as in Fig. 3.8. Dc current flows between two vertical lines, and the 4-
terminal measurement configuration is shown in the inset to Fig. 6.27. The scheme
to calculate the electron temperature 7, has been discussed in Section 3.5.

The sample section is 2 um long, and the other parameters used for the coef-
ficients in Nagaev’s equation are D = 105 cm?/sec, W, = 110 nm, L. = 15.5 pum,
W, = 110 nm, L,; = 24.5 pm, W,3 = 60 nm, L, = 24.5 pm Rp =I1.22 Q, ©p
= 170 K, and ap;, = 0.415. Fig. 6.28 shows T, of the short sample section as a
function of I at various bath temperatures. Here we assumed that the 7T, profile
is constant within the short sample section. The estimated T, indicates that the

efficiency of electron heating by I increases as the bath temperature T is lowered.
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This is simply because the electron-phonon scattering rate (o< T3) decreases as T

is lowered.

6.4.2 Thermopower of mesoscopic AuFe spin glasses

The thermopower difference (AS) of two AuFe wires with different widths is ob-

tained from Eq. 3.52, which can be rewritten in the form of

dT, dav
e (@), w

dV/dI4(I) is obtained from a measurement at T = 0.45 K, which is shown in

Fig. 6.27, and T.(/) which was calculated in the previous subsection. Therefore
AS (= Sy=110nm — Sw=60nm) can be obtained as a function of T,, and the result

is plotted in Fig. 6.29. The magnitude of AS increases as T, is increased up to

T. = 5.5 K.

Fig. 6.29 is very useful when we reconstruct dV/dI4(I) for bath temperatures

from 0.45 to 5.5 K. The scheme to reconstruct dV/dI4(I) is as follows.

1. We calculate T,(I) at a certain T by Nagaev’s equation.
2. Plugging T.(I) into AS(T,), we get a functional form for AS([).

3. Finally dV/dI4(I) is calculated by Eq. 3.52.

Eventually dV/dI (1) for various temperatures from 0.45 to 5.5 K can be calculated

and compared to measurements. The resulting calculated dV/dI4(I)s are shown as
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Figure 6.28: T.(I) of a 0.3 at% AuFe wire at various bath temperatures. I flows as
shown in inset to Fig. 6.27.
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Figure 6.29: AS as a function of T,. The solid line is a fit by AS = AT, +BT2+CT2.
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Figure 6.30: Calculated dV/dI4(I) of the 0.3 at% AuFe wire for various temper-
atures. Thin line: the experimental data in Fig. 6.27. Thick line: the calculated

dv/dIa(I).
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Figure 6.31: Calculated dV/dI4(I) for the 0.2 at% AuFe wire at various temper-
atures. Thin line: the experimental data in Fig. 6.9. Thick line: the calculated

dV/dI(I).
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thick solid lines in Fig. 6.30. The calculated dV/dI4(I)s are exactly superposed on
top of the experimental data for all temperatures ranging from 0.45 to 4.79 K.

A similar calculation for dV/dI4(I) of the narrow 0.2 at% AuFe wire in Fig. 6.9
has been done and compared with experimental data. The calculated dV/dI,(I)
is plotted in Fig. 6.31 along with the experimental data. Again, the calculated
dV/dI4(I) are exactly superposed on top of measurements in a wide range of tem-

perature.

6.4.3 More evidence for the size dependent thermopower

We have learned now that the nontrivial dV/dI4(I) originates from the ther-
mopower difference between two voltage terminals. To account for the reason why
two voltage terminals have different thermopower in AuFe samples, we assumed a
size dependence of the mesoscopic thermopower of AuFe wires. However, one may
point out that the thermopower variation can be caused by spatial variations of the
magnetic impurity concentration in a sample. Concentration variations by their
very nature are random in space, and hence cannot explain the consistent change
of the asymmetry polarity in a variety of measurement configurations as shown in
Figs. 6.25 and 6.26.

Nevertheless one may still insist that voltage wires may have systematic con-
centration variations for some reason. To clearing this issue, let us calculate the

expected dV/dI4(I) due to concentration variations and compare it with observed
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data.

The thermopower in a normal metal is given by {140]

(6.6)

When the conductivity o is sensitive to the energy e of conduction electrons at the
Fermi level, the thermopower S can be large. For this reason a dilute magnetic alloy
in which spin flip scattering gives rise to a conductivity anomaly at the Fermi level,
has a giant thermopower around the Kondo temperature. Fig. 6.32 shows S (T) of
AuFe alloys with various concentrations. The dashed lines are phenomenological

fits to the data obtained from Ref. [97]. We used a fit equation of the form

1 1
) o0

where the fitting parameters @ and (3 are given as a function of impurity concen-

tration ¢ in units of at%,

a = 12029 c!5%7

B = 34.747 c +0.85225 (6.8)

As shown in Fig. 6.32 this phenomenological equation fits the data reasonably well.
Using Eq. 6.7 we can estimate a thermopower variation AS. caused by concentration
variation dc ~ 0.01 at% at ¢ = 0.3 at%. Once AS. is estimated, the rest of
the calculation is straightforward. Using exactly the same scheme discussed in

Section 6.4.2, dV/dI4(I) at T = 0.45 K caused by the concentration variation has



153

OE L L L
XY
LB
e a
XY A
[ LY N -
R S
N
TNY M * ‘
AR
[} 'u \‘ “
K ) . - 0, -
i % N T 05at%
[N
-5 "‘: " \\ .“‘ ]
1 M * -
t v s -
. LY . AL -
[} . * -
[ [N S RS
S— B .‘ . “\ ‘ e -
> 'S " T
A ) N )
=. -4 . 0.3 at% ™-. "
~— ' s -
w | i, -
L) * “‘.
¢ “ o
) o ]
-0 v S o
\‘ 0_1 atOA’ ~‘~.
= . -~.‘ -
\“ ‘~-.!_‘-
- A -.‘-.- .‘
. . Teeee-El
\\\ -‘
0.02 at% ...
p '------~'------- N -
LA i
-15 v 1 —t L 1 . . * . I ‘

10 15

T (K)
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Figure 6.33: Calculated dV/dI4(I) caused by concentration variation between two
voltage terminals. Solid circle: measured dV/dI4(I) of a AuFe 0.3 at% wire at T
= 0.45 K (from Fig. 6.27). Solid line: calculated dV/dI,(I) associated with AS
caused by the concentration variation éc = 0.01 at%. AS (= Sc—0.31at% — Sc=0.3at%)

is obtained from Eq. 6.7.
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been calculated. AS (= Sc—031at% — Se=0.3at%) IS obtained from Eq. 6.7. The
calculated dV/dI4(I) are plotted in Fig. 6.33 along with the measured dV/dI(I).
The calculated dV/dI4(I) is different from the measurement dV/dIs(I). A sharp
zero bias anomaly in the calculated dV/dI4(I) is not found in the measurement

dV/dI4(I). In conclusion, we believe that concentration variations cannot explain

the observed asymmetry in dV/dI(I).

Although the following experiment does not necessarily support the idea of a
mesoscopic thermopower, it provides direct evidence for the fact that dV/dI4(I)
results from a thermal effect. Fig. 6.34 shows dV/dI(I) as a function of the distance
between a sample and a heater. The path of bias current is kept the same for all
dV/dI(I) measurements. The only moving part is the ¥+ terminal, so that the
distance from the heater is increased. Since no current is passing through the
sample (nonlocal measurement), the observed effect is expected to be solely related
to a heating effect.

The resulting dV/dI(I)’s are entirely antisymmetric, having no contribution
from a symmetric part. The amplitude of dV/dI(I) decreases as the distance is
increased, vanishing at a distance of ~ 6 um. This is because the heating effect
decays as the distance is increased, providing clear evidence for the fact that the

asymmetry we observe is directly related to a thermal effect.
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Figure 6.34: Nonlocal dV/dI(I) of a 0.3 at% AuFe wire. Measurement configuration
is denoted by I + I—,V + V—. The sample terminals are labeled as in Fig. 6.23.
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6.4.4 Observed but yet to be ezplained

So far we have just concentrated on the antisymmetric part of dV/dI(I), which
is attributed to thermoelectric effects associated with the width difference of two
voltage terminals. Now let us think about the symmetric part of dV/dI(I).

The symmetric part of differential resistance, dV/dIsym (I} in the diffusive limit
is believed to be nothing but R(T) if I is properly converted into T. However,
Fig. 6.35 shows a clear discrepancy between dV/dIym(I) and R(T) in their ampli-
tude. It has been found that the difference in the amplitudes is more evident when
the width of a AuFe wire becomes narrower. This discrepancy cannot be properly
explained whichever way I is converted to 7', because the discrepancy exists on
the y-axis. A suggestion to explain this discrepancy has been made by K. Lane
et al. [88]. In their point of view, dV/dI(I) does not directly transform to R(T)
just by converting I into T because R(T') is an averaged resistance rather than a

differential resistance. If we write their recipe as a formula, it is expressed by

RO -R@) = 1 [ Snar

+ 2 -210 (69)

where T}, is the bath temperature, and T is temperature which is raised by I above
T;.
However, the scheme is not backed by appropriate physical explanations, and

furthermore the conversion by the scheme does not work properly in narrow spin
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Figure 6.35: Enhanced amplitude of a spin glass maximum in dV/dI(I). Solid line:
dV/dIgm(I) at T = 1.205 K. Dashed line: Rgyyar, the resistance converted from
dV/dIgm(I). Dotted line: R(T). R(T=1.205K) = 57.16 2. The sample is a AuFe
0.4 at% wire with W = 85 nm, L = 3.5 um, and ¢ = 330 A.
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glass wires as shown in Fig. 6.35. After converting dV/dI(I) (solid line) into Rayyar
(dashed line) by their scheme, the minimum of dV//dI(I) with high current regime
disappears. This should not happen if the conversion is an appropriate one.

The discrepancy between the amplitudes of dV/dI g, and R may be due to the
difference of the phonon contribution for each case. Since the dc bias current effec-
tively heats up the electron system only, the phonon contribution to the differential
resistance (dV/dIm(I)) should be much smaller than normal resistance (R(T)).
This fact explains the observation that the minimum of dV/dlgm at [ = 90 pA is
much smaller than that of R(T) at T =~ 12 K (see Fig. 6.35).

Further thorough study is demanded with regard to the discrepancy between
the amplitudes of dV/dIsym(I) and R(T), before we address the detailed mechanism

involved in this problem.



Chapter 7

SUMMARY AND CONCLUSIONS

7.1 Size effect in the spin glass resistivity

The size dependence of electron-spin scattering in magnetic alloys has been con-
tinuously a hot issue in the mesoscopic physics community for the last seven or
eight years. We have investigated the issue by resistivity measurements of AuFe
spin glass wires. We have measured low temperature resistivity p(7') on AuFe spin
glass wires. The wires have a thickness ~ 200 A and linewidths ranging from 150
nm to 300 pm. A broad resistivity maximum was observed as T' was lowered, re-
flecting the existence of spin freezing at low temperature. The observed resistivity
maximum temperature T,, was indeed size dependent, decreasing as the linewidth
was reduced. However, this T}, shift was found to be due to the electron-electron
interaction contribution to p(T), while the spin glass contribution was indepen-
dent of linewidth. This result is in contrast the previously observed size effect of
the spin glass resistivity for CuCr films [87], and leaves the open question of the

characteristic length scale in spin glasses.

In a recent paper [123], Ujsaghy et al. proposed anisotropic spin-orbit scatter-

160
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ing as the origin of the size effect of the resistivity in dilute magnetic alloys. The
anisotropy is higher at the surface and hence the surface-to-volume ratio plays an
important role in the size effect. The surface-to-volume ratio is not changed much
by varying linewidth of wires, but the surface-to-volume ratio is changed consider-
ably when the thickness of films is varied. Therefore one expects to see a cross-over
of the size effect when the linewidth becomes smaller than the film thickness. To
check this idea, one needs to measure the resistivity of very narrow wires of which

the linewidth is comparable to the film thickness. We leave this thing as a future

project.

7.2 Thermopower of mesoscopic spin glass wires

We have measured the differential resistance dV/dI of mesoscopic AuFe spin glass
wires as a function of dc bias current [ at low temperatures. The major role of dc
bias current is heating of the conduction electron system above the lattice tempera-
ture. Therefore, dV/dI(I) at low temperature resembles resistance as a function of
T. When [ is reduced from high currents, dV/dI(I) decreases. When I is reduced
further, dV/dI(I) initially increases due to the Kondo effect, and finally decreases
again due to spin glass freezing. Since electron heating is basically independent of
the direction of I, the resulting dV/dI(I) is expected to be symmetric in I. How-
ever, when the width of one voltage probe is less than ~ 150 n.n and different from

the width of the other probe, dV/dI(I) becomes asymmetric in /. By assuming the
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existence of a size dependent thermopower in mesoscopic spin glasses, the observed
asymmetry in dV/dI(I) at various temperatures can be explained consistently. In
conclusion, we find that the thermopower of AuFe spin glass wires becomes size
dependent as the width is reduced below ~ 150 nm.

What is the reason we see a size dependence in the thermopower, but we see
no size dependence in the resistivity? There could be a couple of answers to this
question. First, the width of the wires in the resistivity study ranged only down to
150 nm. Therefore it is still consistent with the fact that the size dependence in the
thermopower is revealed only below ~ 150 nm. Second, it has been once pointed
out that no size effects should be observed until the electronic density of states is
modified [34]. The thermopower may be a more sensitive tool to detect a size effect
which originates from the modification of the electronic density of states [140].

There is another issue which still needs to be resolved: the critical length scale
for spin glasses or the Kondo effect. The Kondo length, £k = hvr/ksT, can be as
large as 10 um for AuFe alloys, and hence one should see a size effect in transport
properties at much larger scales than was observed for the thermopower in this
study. There might be a possibility that the Kondo length is not properly scaled.
Actually, the critical length scale (~ 150 nm) which we found in thermopower
turns out to be more or less consistent with Bergmann’s argument [17]. He argued
that the number of electrons which one needs to make the Kondo bound state

is ~ 10er/kpTk. Using the number density of conduction electrons for Au, one
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gets a length scale of the Kondo bound state ~ 20 nm. Then, one expects a
size dependence on a much smaller size scale than £k, as was observed in our
experiments.

We are in the process of developing a local electron thermometer by using the
temperature dependence of resistance of a normal metal wire in a proximity region
around a normal/superconductor interface [37]. With this thermometry technique

we expect a direct measurement of the thermopower of mesoscopic AuFe spin glass

wires for various widths.

While developing an interpretation of the asymmetry in dV/dI(I) of meso-
scopic AuFe spin glass wires, we noticed that the measurement of dV/dI(I) can be
a very sensitive tool to detect thermopower of very small devices at very low tem-
peratures. We have applied this method to measure the thermopower of Andreev

interferometers, and demonstrated the first observation of quantum interference

effects in the thermopower [51].
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Appendix A
LIST OF CHEMICALS, ELECTRONIC COMPONENTS,
AND MEASUREMENT APPARATUS USED IN THIS
STUDY
AD524, AD624, AD630, AD632 Analog Devices, Norwood, MA.
Dow Corning 340 Dow Corning Corp., Midland, Mich.
DS345 Stanford Research Systems, Sunnyvale, CA.
Edwards 306 Edwards High Vacuum, West Sussex, England.
GenRad 1432-W Decade Resistor General Radio Co., Concord, MA.
HP3325A, HP6260B Hewlett Packard, Cupertino, CA.
JXA-840 Scanning electron microscope, JEOL.
Keithley 230 Keithley Instruments, Inc., Cleveland, OH.

Kepco BOP 20-20M, Kepco BOP 100-1M Kepco, Inc., Flushing, NY.
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Kulicke and Soffa Model 4123 Kulick and Soffa Industries, Inc., Willow Grove,

PA.
LakeShore Model 622 Lake Shore Cryotronics, Inc., Westerville, OH.

Leybold XTM/2 Deposition Monitor Leybold Inficon Inc., East Syracuse,

New York.
Microposit MF-319 Developer Shipley, Marlborough, MA.
Microposit S1813 Photo Resist Shipley, Marlborough, MA.
NANOTM 100PMMA A4 Microlithography Chemical Corp., Newton, MA.
NANOTM 495PMMA A4 Microlithography Chemical Corp., Newton, MA.
Oxford 300 Kelvinovax Oxford Instruments, Oxon, England.
PAR116, PAR124 Princeton Applied Research, Princeton, NJ.

Pi section filter Murata Electronics North America, Inc., Rockmart, GA. The

filters used in this study have a loss ~ 5 dB at 10 MHz and ~ 70 dB at 1

GHz.

Silicon wafers Polishing Corporation of America, Santa Clara, CA.



175

Superconducting wires We use superconducting wires for data lines. The wires

have a CuNi 0.004” diameter with Formvar insulating skin. Supercon, Inc.,

Shrewsbury, MA.
Tencor P-10 Tencor Instruments, Mountain View, CA.
Triad G-31 Triad-Utrad Distributor, Huntington, IND.
Quintel Q-2001CT Quintel Corp., San Jose, CA.
1 MQ Precision Resistor Vishay Resistive Systems Group, Malvern, PA.
12 Tesla Superconducting magnet Oxford Instruments, Oxon, England.

6 Tesla Superconducting Magnet Cryomagnetics, Inc., Oak Ridge, TN.
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