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Abstract

Nonequilibrium superconductivity has been studied in thin film hybrid nano devices
containing a superconductor (S) and a normal metal (N) through electrical charge transport

measurements at temperatures below the superconducting transition temperature T . These

samples were fabricated by two-step electron beam lithography onto silicon substrates.

Measurements were performed at low temperatures using a dilution refrigerator, a He?

refrigerator, and a He* cryostat.

It was found that a resistance higher than the normal state, the so-called resistance
anomaly (RA), can be generated by applying radio-frequency (rf) radiation to a pure
superconductor, creating a dynamic NS interface in the sample. The rf radiation induced
resistive phase-slip centers (PSCs) at locations with weak superconductivity in the sample.
The results are consistent with the charge imbalance model for electrical transport when
electrons are transported across a PSC. The charge imbalance is revealed by measuring the
resistance and the current-voltage characteristic of a one dimensional superconducting wire

or loop near the transition temperature T .

In the devices containing NS interfaces, measurements at temperatures far below
the transition showed an anomalous proximity effect which manifests itself in the resistance
of a normal metal as a function of temperature, applied bias voltage, and external magnetic
field. A detailed analysis based on recent developments in quasiclassical Green functions
theory shows some discrepancies between different measurements. Comparison between
the theory and the experimental results suggests further theoretical development needs to be

done to understand the nature of superconducting correlations induced in the normal metal.
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Chapter 1

Introduction

What happens when a normal metal is connected to a superconductor ? A superconductor
(S) in equilibrium contains a condensate formed by pairs of electrons of opposite momenta
and spin. This Cooper pair condensate is separated from quasiparticle excitations by an
energy gap. Quasiparticles injected from the normal metal (N) into the superconductor are
converted to Cooper pairs over a finite distance near the NS interface, leading to a

nonequilibrium region near the NS interface.

Inside the normal metal, near the NS interface, the interactions between electrons
are changed due to the proximity of the superconductor. At zero temperature and energy,
conductance of the normal metal is expected to double compared to its value in the absence
of the superconductor. Consequently, one expects that the resistance of the normal metal

decreases when it is connected to a superconductor, the so-called proximity effect.

New phenomena are expected when the dimensions of the normal metal and
superconductor become comparable to the corresponding coherence lengths, §N and &. The
resistance of a superconductor connected to a normal metal can “exceed” its normal state
resistance by as much as 30% at the superconducting transition, the so-called resistance

anomaly [1-9]. The resistance of a normal wire connected to a superconductor does not

always decrease as the temperature is reduced below the transition temperature T, of the

superconductor, but is predicted to regain its normal state value at T -~ 0, the so-called
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reentrance effect [10-17]. These unique phenomena have been observed in sub-micron
devices thanks to modern lithography and cryogenic techniques. These results deepen our

knowledge of the interaction of electrons in a metal or superconductor.

1.1 Resistance anomaly

The term “mesoscopic” describes systems whose dimensions are on the sub-micron scale
and comparable to the characteristic lengths responsible for the physics of interest in the
system. Recently, transport properties of superconductors have been studied intensively in

systems where the dimensions of the samples are comparable to the coherence length of the

superconductor. For a thin-film superconductor with thickness and width comparable to &,
one of the unusual phenomena observed near the superconducting transition temperature T _

is called the resistance anomaly (RA), in which the resistance of a superconductor in the
transition from its normal state to the superconducting state can exceed its normal state

resistance near Tc. This RA was first observed in a pure 1D aluminum (Al) wire by

Santhanam et al. [1]. The physics behind this unique phenomenon was attributed to the
charge imbalance [18-20] resulting from the formation of a phase-slip center (PSC) in the

1D wire by the authors of Ref. 1. In this model, the formation of PSCs near T _ results in a

dynamic SNS interface in the sample. Due to the presence of charge imbalance, there exist

two chemical potentials inside the nonequilibrium region near the NS interfaces -- the

quasiparticle chemical potential uq and the pair chemical potential p.p. The superconducting

voltage probes of the sample measure the potential difference up. Since uq relaxes over a



longer length than up, the voltage probes, being placed near the intrinsic NS interface,

measure a larger gradient of the potential, resulting in a measured resistance larger than the

normal state resistance.

Historically, charge imbalance was first introduced by Pippard ez al. [21] to explain
the excess resistance observed in a NS interface. Later, J. Clarke [22] carried out an
important experiment which explicitly revealed the concept of the model by injecting
quasiparticles into a superconductor to generate a charge imbalance. The quantitative
understanding of the charge imbalance model was done by M. Tinkham and J. Clarke [23]
to explain the experiment in Ref. 22. Theoretically, Tinkham [24] first studied the detailed
theory of the charge imbalance. Schmid and Schoén [25] then used a Green function
method to distinguish two different nonequilibrium modes: a transverse mode which causes
charge imbalance and a longitudinal mode which causes a change of the energy gap. A
two-fluid model was subsequently introduced by Pethick and Smith [26] to explain the

relaxation of the charge imbalance.

Experimental interest in charge imbalance phenomena switched to pure
superconducting wires when lithography techniques became more sophisticated. In the
classic experiment of Dolan and Jackel [27], a nonequilibrium region was created in a
narrow superconducting stripe by inducing a resistive PSC by means of a notch in the
stripe. The spatial dependence of the difference between two chemical potentials was
directly detected near the phase-slip center by placing several equally spaced normal and
superconducting voltage probes next to the PSC. This confirmed beautifully the length

scales involved in charge imbalance.
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As the dimensions of the pure superconducting wire are further decreased, the role
of a PSC seems to be more important in explaining the resistance anomaly phenomena.
Soon after the experiment of Santhanam et al. [1], Vloeberghs et al. [2] carried out an
experiment on a 1D superconducting wire containing a loop. In addition to the phenomena
observed in Ref. 1, they also observed anomalous behaviors in the resistance as a function
of magnetic field B, applied perpendicular to the loop. The phenomenon was referred as
“anomalous Little-Parks oscillations” in contrast to the classical Little-Parks oscillations
[28]. Since there was no apparent PSC in the samples of these experiments, the
confirmation of a PSC in these systems is important in forming a solid theoretical basis for

the resistance anomaly observed.

In a recent experiment by Park ef al. [5], dynamic PSCs were clearly created in a

2D superconducting stripe, part of which was chemically etched and possessed a T, and
critical current I _slightly lower than those of the unetched superconductor. The resistance

anomaly was not only observed in the temperature dependence but also linked to the
“excess voltage” in current-voltage (I-V) characteristics through the charge imbalance
model near the PSCs. The interaction between the formations of different PSCs was also
discussed. At about the same time, we [6] demonstrated that the resistance anomaly and
excess voltage can be induced in a 1D pure superconducting wire by applying radio-
frequency (rf) radiation. In a later experiment [9], the same group demonstrated the
correlation between the resistance anomaly and PSCs by locally suppressing the order
parameter in the sample, and therefore facilitating the formation of a PSC. Another
discovery by B. Burk er al. [7, 8] was that the resistance anomaly can be induced by

applying an a.c. “noise current [ " to the measuring current Ip. This effect is based on
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mixing of I | and Ip by the nonlinear portion of the I-V characteristic of a superconductor,

resulting in an excess voltage and resistance anomaly. This mixing effect raises some

concerns about the measurement techniques used in recent resistance anomaly experiments.

In Chapter 4 of this thesis, our investigation of these resistance anomalies is
presented. We will first discuss our previous studies on resistance anomalies in pure
mesoscopic superconductors induced by rf radiation, magnetic field, and a.c. noise current.
Then we discuss recent investigations of resistance anomalies in mesoscopic devices

containing NS interfaces.

1.2 Anomalous Proximity effect

Historically, the proximity effect was first reported by Holm and Meissner [29] who
observed zero resistance in a normal-metal layer sandwiched between two
superconductors. Meissner [30] and Smith et al. [31] then extended the thickness of the
normal metal layer to micrometers. The observation of proximity effect was made even

more convincingly by Clarke [32] who showed the clear existence of a critical current in a

S-N-S structure with a N layer 0.55 pm thick.

The proximity effect can be understood most simply in terms of Ginzburg-Landau
theory [18, 33-35]. In this picture, the penetration of order parameter into the normal metal
is responsible for the proximity effect. The order parameter, which is a spatially dependent
quantity, decays from the NS boundary over a characteristic length equal to the coherence

length in the normal metal. The microscopic theory of proximity effect is described in
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terms of Andreev reflection [36] at the NS interface, a consequence of Bogoliubov
equations [37-38], applied to the case of a spatially varying energy gap A(x), with a
discontinuity at the NS boundary. Due to this discontinuity an electron-like quasiparticle

having an energy E < A in the normal metal cannot propagate into the superconductor as a

free quasiparticle state, but is reflected as a hole, with the concurrent production of a
Cooper pair in the superconductor. Andreev reflection leads to an enhancement of the
normal metal conductivity which was observed as an excess current in some experiments

on superconducting microbridges [18, 34].

As systems are extended from thin-film junctions to one dimensional wires,
quantum interference effects stemming from the proximity effect become explicit. An
anomalous proximity effect has been observed in 1D diffusive metals connected to
superconductors by one or two NS interfaces [39]. The general properties of these
anomalous proximity effects include: (i) A supercurrent can be sustained in a 1D diffusive
wire a few microns long connected to two superconductors [40]; (ii) The transport
properties of the normal metal are sensitive to the phase of a superconductor and show
periodic oscillations as a function of the phase difference between two NS interfaces [41-
44]. The amplitudes of these oscillations are larger by several orders of magnitude than the
usual normal metal quantum interference effects observed in diffusive metals [45] when the

superconductor is absent. (iii) At temperatures well below Tc, a normal metal connected to

N and S reservoirs shows a reentrant behavior distinguished by an increase of the normal-
metal resistance [10-14]. In order to explain these anomalous proximity effects, an
alternative theoretical approach based on quasiclassical Green functions theory has been

studied intensively in NS systems [46-53]. Instead of solving Schrodinger-like equations
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and then calculating the expectation values of the physical quantities of interest, this theory
used a set of equations of impurity-averaged quasiclassical Green functions obtained by
Usadel [54] to calculate various physical quantities. This approach has been successful in
explaining quantitatively most recently observed experimental results on proximity effect in

diffusive metals where the energy involved is much smaller than the superconducting

energy gap.

Recent experimental interest on proximity effect in 1D diffusive metals started with
a number of experiments by Petrashov et al. [55]. The strange phenomena observed
include: an increase in the resistance of a diffusive metal adjacent to one or two
superconductors at the onset of superconductivity, and an enhanced Aharonov-Bohm (AB)
effect in normal-metal rings connected to superconducting stripes as addressed in (ii) and
(iii) of the properties of the anomalous proximity effect. Early experiments [42-44] after
Petrashov et al. in the diffusive proximity regime concentrated on phase sensitive
properties, a result of Andreev reflection. The system of interest is usually referred to as an
“Andreev interferometer.” These experiments used different methods to modulate the
phase difference between two NS interfaces in the interferometer including: a dc current
passing through a series of Josephson junctions [42], a magnetic field threading a normal-
metal/superconducting loop [43], and a dc current passing through a long superconducting
loop connected to the normal metal at two NS interfaces [44]. The energy-dependence of
Andreev reflection in the proximity affected diffusive metals was shown in two later
experiments by Courtois et al. [12] and Guéron et al. [86] respectively. The former group
distinguished the long-range coherence property of the proximity effect from other quantum
coherence effects, and the latter group observed a reduced density of states in the proximity

affected normal-metal wire.
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The success of the Usadel equation [54] in explaining the experimental results of
Ref.[86] motivated further investigation of the proximity effect in 1D diffusive wires based
on quasiclassical Green functions theory. The long-range coherence of the proximity effect
was also realized in the experiment of Antonov et al. [56], where it was differentiated from
other quantum coherence effects through several different geometries of NS hybrid loops.
Supercurrent sustained in a diffusive metal between two superconductors was further
investigated by Antonov et al. [S7]. The reentrance effect was demonstrated by Charlat ez
al. [13] and Petrashov ez al. [14]. While all these experimental results are qualitatively well
explained by the theory of quasiclassical Green functions, detailed quantitative comparisons
between the theory and experiments is not easy, probably due to an intrinsic difficulty in
studying the energy dependence of this effect in the diffusive system. In Chapter 5, we
will carry out a detailed comparison of the theoretical predictions with the reentrance effect
observed in three different transport measurements in a diffusive system. The comparison
shows quantitative discrepancies between the theory and the experimental results. By
introducing the nonequilibrium superconductivity effect into our device, we show that the
theoretical calculation can explain some of the data, while it cannot explain the rest of the

data, implying an intrinsic difference between different transport properties.

1.3 Overview of the thesis

The rest of this thesis is organized as follows. Chapter two gives a brief overview of the
Bardeen, Cooper, Schrieffer theory of superconductivity, followed by detailed discussions
of charge imbalance and quasiclassical Green functions theories, emphasizing the theory

relevant to our experiments. Chapter three is comprised of two parts: details of sample
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fabrication and techniques of transport measurement on mesoscopic devices. The results of

our experiments in the resistance anomaly induced by radio-frequency signals close to T ,

along with nonequilibrium superconductivity effects observed in 1D NS systems, are
presented in Chapter four. Chapter five deals with the anomalous proximity effect

(reentrance effect) at temperatures far below Tc. A detailed simulation of the experimental

results based on quasiclassical Green functions theory is compared with the data. Chapter
6 concludes this thesis with a summary of our results and some comments on some

possible future directions in this field.



Chapter 2

Theory

In this chapter I will briefly describe the theory involving nonequilibrium superconductivity
and the proximity effect. The chapter starts with a review of the Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity [58] and Bogoliubov equations [37] with a
spatially varying order parameter. Two kinds of nonequilibrium modes in
superconductivity are then explained at temperatures near the superconducting transition

temperature T , i.e., the charge mode and the energy mode, followed by a more detailed

explanation of the charge imbalance model and phase-slip centers. Finally, the
quasiclassical Green functions theory is introduced in order to explain the anomalous
proximity effect in a normal metal connected to a superconductor at temperatures far below

T, with the emphasis on some important concepts and their applications to the transport

problem in diffusive metals.

2.1 BCS theory

2.1.1 Attractive interaction between two electrons
The basic idea of the microscopic theory of superconductivity developed by BCS [58] is
that a weak attraction can bind pairs of electrons into a bound state no matter how weak the

interaction [59]. The system then consists of a bound pair and a Fermi sea of electrons

obeying the Pauli exclusion principle occupying all states with wavevetor k < kg, where k.

10
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is the wave vector at the Fermi level. The existence of this bound state implies a gap in the

energy spectrum, which is required to explain many phenomena.

The microscopic origin of the attractive interaction was first introduced by Frohlich
[60] and Bardeen er al [61]. They pointed out that the electron-phonon interaction is able to
couple two electrons together in such a way that they behave as if there is a direct
interaction between them. In this picture, one electron emits a phonon which is
immediately absorbed by another. Frohlich showed that in certain circumstances this
process could result in a weak attraction between the electrons which might produce an

energy gap of the right order of magnitude responsible for superconductivity.

Consider the bare Coulomb interaction V(r) = e%/r, where r is the distance between

the two electrons. Taking into account the dielectric function € of the medium, the matrix

elements of the interaction potential can be written [18]:

V(Q) =4ne’/(q*+ k ?), (2.1.1)

where q = k-k’ and hw are the wave vector and energy of the phonon respectively. I/kS ~

1A is the Thomas-Fermi screening length of the conduction electrons. The electronic
screening eliminates the divergence at q=0. This V(q) characterizes the strength of the
potential for scattering a pair of electrons with momenta (k’, -k’) to momenta (k, -k).
However, V(q) thus obtained is positive and consequently, no superconductivity would

result.
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To introduce the negative terms, Pines [62] created a “jellium” model, in which the
solid is approximated by a fluid of electrons and point ions. The essence of this model is
that the first electron polarizes the medium by attracting positive ions; these positive ions in
turn attract the second electron, giving an effective attractive interaction between the
electrons. If this attraction is stronger than the repulsive Coulomb interaction,
superconductivity then results due to a net attractive interaction. As shown by de Gennes

[35], this model leads to the following formula:

V(@) = [4ne’/(q*+ kI 1+ @ Yo - 0 )] (2.1.2)

The first term describes the Coulomb repulsion and the second term describes the

interaction between the electron and the phonon. As we can see in Eq. (2.1.2), V(q) is

always negative for o < mq regardless of the material parameters. Although the formula

does not take into account the complexity of the interactions, it gives a reasonable order of
magnitude for the attractive interaction and provides a right direction for the exploration of

the origin of superconductivity.

2.1.2 BCS ground state

The concept of a pair interaction strongly suggests the ground state of a superconductor is
entirely composed of electron pairs, each pair containing electrons of opposite momentum
and spin in order to minimize the total free energy. This is called the superconducting

condensate and it is described by the ground state introduced by BCS:
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Woes = [T+ Vké:ré:kx)l‘bO)
K (2.1.3)

where 1. and v, are coherence factors and Ip_> is the vacuum state with no particle.
k k 0 p k

and v, obey the normalization condition:
I P+ v = 1. (2.1.4)

Eq. 2.1.3 indicates that the probability of the pair of state (kl,-kl) being occupied and

. . 2 . .
unoccupied is Ivkl2 and Ip.kl~ respectively. The procedure used to obtain the ground state

energy is the variational method. The goal is to minimize the expectation value of the
so-called reduced Hamiltonian subject to the constraint of the normalization condition. The

reduced Hamiltonian has the following form [18, 35, 63]:
HR = Z € CroCrot Z Vi1 €0 €Ly Gy (2.1.5)
k.c k.k*

Note here € denotes the excitation energy relative to the Fermi level, i.e., € = k2 - EF.

The expectation value <HR> is then a function of M and % Using Eq.(2.1.4) and

introducing an energy gap Ak for each state k, one obtains an equation for the

superconducting energy gap which has to be solved self-consistently:
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YV —F—. (2.1.6)
K 2, en+ AL

The BCS coherence factors can be expressed in terms of Ak and €’

~
—
t o

v, = 5(1——5—;') (2.1.7a)

Hye = ?(l-l—E—k) (2.1.7b)

2.- . - . . . .
where Ek= (AK2+8k') s the quasiparticle excitation energy at state k or -k. Using the

Cooper model potential:

-V le land le.l < hoy
kk’

(2.1.8)
0 le 2w, orle,.l2hog

one can solve the gap equation (2.1.6) in its integral form combined with Eq.(2.1.8) and
obtain:

A = 2hwge “. (2.1.9)
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Here hoy is the cut-off energy of the integration, O, being the Debye frequency and N(0)

the density of states at the Fermi level. We have assumed the energy gap is a constant A

for all states, which has proved to be a reasonable assumption to explain most of the
experimental results [18, 35, 63]. Once the energy gap is obtained, the condensation

energy can be evaluated using the coherence factors and yields:

E ==N(0)A’. (2.1.10)

S

| —

2.1.3 Finite temperature
At finite temperature the probability of a quasi-particle that is excited out of the condensate

is given by the Fermi distribution function [18, 35, 63]:

1
f(E) = - — 211D

e “+ 1

where B=1/kBT. The gap equation then becomes:

|

tanh(BE, / 2)
v - - E,

2.1.12
L —% 2.1.12)

9| —

k

The temperature dependence of the energy gap A(T) can be obtained by solving Eq. 2.1.12
self-consistently. (The gap appears in the energy E,.) Atthe critical temperature T, the

gap equation possesses no nontrivial solution and the system becomes normal, while at
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zero temperature the system is completely superconducting. This implies there exists an

equation connecting Tc with the zero-temperature energy gap A(0). To obtain this
equation, one can solve Eq. 2.1.12 by replacing T with T.. It was found the gap at zero

temperature A(O) is related to TC through a universal constant [18, 35, 63]:

A0) = 1.76 kBTc (2.1.13)

2.1.4 Bogoliubov Equations

In the case of an inhomogeneous superconductor, the order parameter varies in space. The
coherence factors used to obtained the ground state properties must then also be space
dependent. The Bogoliubov transformations [18, 35, 63] generalize the BCS factors in the
spatially dependent case which is commonly encountered in superconductors when the
superconductor is connected to a normal metal or impurity scattering is involved. The

Bogoliubov transformations read [35]:
Yrt)= Y, 1k, @- v, vl (2.1.14a)
Yrl)= Y[y, 1, (0= 7., vi)] (2.1.14b)

where ‘¥(rl) is now an annihilation operator for a position eigenfunction instead of the

momentum eigenfunction dealt with in the BCS case. yand y* are new operators still

obeying the anticommutation rules:
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'Y;a'Ymﬁ + YneY;a = Smnsas (2.1.15a)

Ynuynﬂ + Ynﬂ‘Yna =0 (2.115b)

Similar to the treatment in BCS, the position dependent coherence factors here are

determined by diagonalizing the effective Hamiltonian H,; Taking the external field and

the variation of the order parameter into account [35]:
. I % A ,
Hy= [{Z¥' @ 05 (7 V-)"+ U -pl¥(r, o)
+ AP )P (r!) + AP 1)P(r!)}dr (2.1.16)

where A(r) = V<¥(r)¥(rl)>. The coherence factors uk(r) and vk(r) are found to obey

the coupled Bogoliubov equations [35]:

Hy, A |(p(r) H(r)
i = 2.1.17)
AT(r) —H, |{v() v(r)
with H,= ﬁ %v-%)%um—u. (2.1.18)
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2.2 Nonequilibrium superconductivity

Before turning to the nonequilibrium case, let us review some important results at
equilibrium from BCS theory. In equilibrium, the ground state of a superconductor is
formed from Cooper pairs according to BCS theory. The quasiparticle excitations above

172

the ground state have energies equal to Ek = (A"' + ekz) , where € = wk2 - EF. € > 0

for k > kF and g, < Ofork < kF. The energy gap A and total electronic charge Q can be

expressed as [18, 19, 64]:

1-2f, 1-2f,

2
— = =Y — 2.2.1
\% ; E, g(Az_'_éi)nz ( )
2e B 2
Q= - LI+ Vvil-f)] (2.2.2)
k

where fk is equal to the Fermi function f,= (1+ eﬁE")"l . As illustrated in Fig. 2.2.1(a) the

pair interaction only happens within a very small energy range ~ 2A near the Fermi energy.

The important nature of a quasiparticle excitation is that it continuously changes from
“electron-like” to “hole-like” as the excitation goes from outside to inside the Fermi surface.

Fig. 2.2.1(b) shows the probability of occupation of the condensate as a function of the

quasiparticle energy €, Deep inside the Fermi surface the metal is filled with pairs of

electrons with opposite momenta and spins. Near the Fermi surface the probability quickly
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(a)

on-like particle

icle

(b) 2

12
P
2A |

Fig. 2.2.1 Illustration of the pair condensate and quasiparticle excitations in a
superconductor. (a) Phenomenological picture. (b) Probability of a state k is
occupied by a pair of electrons with opposite momentum and spin. (Adapted from
R. Tidecks, Ref. {20]).
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drops to zero over a small energy range ~ 2A. At € = EF, the probability is Ivkl2 = 1/2,

where vk is the usual BCS coherence factor.

Under nonequilibrium conditions, the probability of occupation of each state £, (E, )
is no longer equal to f,(E,) and causes an imbalance in both charge and energy. The
difference between f, and f; can be split into two components, one which is even in E

about the Fermi energy, and one which is odd. The even (or energy) mode can be induced
by neutral perturbations such as phonons and photons in which the perturbation produces
an equal change of quasiparticles in both electron-like and hole-like branches. In
consequence, it causes an effective change in the energy gap. The odd (or charge) mode
can be induced by injecting quasiparticles into the superconductor. As a result, an equal

amount of charge has to be removed from the condensate to maintain overall charge

neutrality, resulting in a difference between the chemical potential up of the pairs and the

chemical potential uq of the quasiparticles in the superconductor. One should note that

quasiparticle injection into a superconductor also generates an even mode imbalance.

Since the experiments done in this thesis involves only charge imbalance I describe

in the following sections some important concepts and results of charge imbalance.

2.2.1 Charge Imbalance
Charge imbalance is mostly observed when the dominant electron-like quasiparticles are

injected into the superconductor. Eq. 2.2.2 can be rewritten as [19, 20]:
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Q=Q+Q" (2.2.3)
where
=iy 2.2.4
Q. = V;v"’ (2.24)
Q = 2TW-vi, = =% (2.2.5)
—vkl‘lk kk_vqufk’ Ry

The first term Q_ is the contribution from pairs while the second term Q" is from

quasiparticles. We define an effective charge in units of (-e):

Qe = Ky — Vi = E/E,. (2.2.6)

We can see immediately that q = +1 (electron-like) for g >> A and q, = -1 (hole-like) for
g << A. In thermal equilibrium, Q‘=O when fk=f0 since q, and fo are odd and even
functions of €, about EF respectively. Therefore the chemical potential of the pair

condensate up is equal to EF even at finite temperature (even mode). Let us now turn to the

nonequilibrium case. If one adds quasiparticles to the electron-like branch, the condensate

has to remove an equal amount of charge to maintain overall charge neutrality. up is then

lowered by an amount 8, so that the bottom of the excitation spectrum is shifted to the left

(Fig. 2.2.2). Consequently, q, is no longer an odd function about EF, and Q‘;# 0. The
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injection of excitations into the electron branch drives both pair and quasiparticle chemical

potentials up and uq away from the equilibrium Fermi surface EF as shown in Fig. 2.2.2.

2.2.2 Relaxation of charge imbalance

Restoration of equilibrium for a charge or energy imbalance requires a decay or relaxation
of the nonequilibrium quasiparticle distributions by microscopic mechanisms taking place
in the superconductor. There are three main processes that contribute to the relaxation of
the charge imbalance on the electron or hole branch of the quasiparticle spectrum [18-20].
The first is inelastic scattering by phonons. This includes: scattering to lower energy and
lower charge on the same branch or to lower energy and lower charge with opposite sign
on the other branch. The second is recombination with a quasiparticle of the same or the
other branch. The third is elastic scattering from non-magnetic impurities in a

superconductor with an anisotropic gap.

Taking these three processes into account, Schmid and Schén [25] derived an
appropriate relaxation time for dirty superconductors. They obtained a charge imbalance

relaxation time close to Tc of the form:

4k, T -
T, = ——2[(t/ 201+ 17T /A ) (2.2.7)
A
S T p_(‘tmzvs 1 3%
A N T
T, 21, A or (2.2.8)
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Bp,u

Fig. 2.2.2  Probability of the pair condensate v, 2 and excitation energy E, as a
function of &, = (E;2 - A2)1/2 for the equilibrium case (curve A) and the

nonequilibrium case (curve B). W, is the pair chemical potential. Curve B

corresponds to an injection of electron-like quasiparticles into the condensate.
(Adapted from R. Tidecks, Ref. [20]).
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Here T is the elastic spin-flip scattering time, D = Qvl_j3 is the diffusion constant, v, is the

superfluid velocity and T is the inelastic scattering time. The first term in Eq. 2.2.8

describes the effect of spin-flip scattering, the second the effect of inelastic scattering, the

third pair-breaking by the supercurrent, and the last term the effect of spatial variations of

the gap parameter A. In the limit hzl"/AztE << 1, it follows that:

4, T
Tp = — “q/rs/zr (2.2.9)

TtA

In the case of relaxation due only to inelastic scattering with phonons, I' = l/2‘cE, and

consequently:

T, = T, (2.2.10)

The charge imbalance will diffuse away from the injection point due to relaxation. In one

x/A

dimension (1D) this causes a decay of Q" in space as e ™Aq", where

Ay = 4’D‘EQ. . (2.2.11H)

AQ- is called the charge imbalance relaxation length, and is typically a few microns to a few

tenths of microns in Al [27, 70].



2.2.3 Phase-slip centers
As discussed in great detail in many articles [18-20], the time evolution of the phase of the

superconducting order parameter is spatially dependent if an electrostatic potential Vi,

exists between two positions r, and r, The time dependence of the phase difference 9,

1

measured between r, and r, is given by the Josephson relation ¢=2eV ,(t)/h, which

leads on integration to:

2 t
Q,,(t) —9,,(0) = Te_[v(t' )de (2.2.12)
0

If the time-averaged voltage is nonzero, the phase difference will increase as a function of

time. This leads to an increase of the magnitude of the supercurrent density which is given
by J S=-(Ze/m*)l\|1(r)|2?sV(p(r). Consequently, the order parameter decreases and the
superconductor will eventually enter the normal state. To maintain superconductivity, the

phase difference has to be reduced by an equivalent amount. For this reason, a

“phase-slip” event is assumed to occur in the superconductor, each phase-slip event

reducing the phase difference by 2. In steady state, the average of the phase difference

generated by the voltage is compensated by phase-slip processes. The frequency of the

phase-slip process is just the Josephson frequency:

0, = (V) (2.2.13)
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There has been much effort devoted to explaining the model of a phase-slip center. The
Rieger-Scalapino-Mercereau (RSM) model [65] focuses on the dynamics of the
superconducting order parameter. The Skocpol-Beasley-Tinkham (SBT) model [66] adds
nonequilibrium quasiparticles and charge imbalance relaxation during diffusion of the
quasiparticles. The Kadin-Smith-Skocpol (KSS) model [67] then develops the dynamics
of charge imbalance near a phase-slip center. For the purpose of interpreting our
experimental data we briefly describe the essence of the SBT model with emphasis on the

charge imbalance aspect.

2.2.4 Skocpol-Beasley-Tinkham (SBT) Model

Using the SBT model one can obtain the connection between the voltage across a phase-

slip center and the charge imbalance length A_-. The main ingredient of the theory is

Q
shown in Fig. 2.2.3 for the 1D case [18-20]. A phase-slip center contains a core of length

~ 2&, in which the oscillation of the order parameter occurs, where & is the Ginzberg-

Landau coherence length. On either side of the core a charge imbalance region is created

and diffuses over a distance AQ- before uq relaxes to up. The current inside a PSC

decomposes to a nonzero time-averaged dc supercurrent <I>=1/2 and a normal current

[, =1-<I>, where I is the applied current. The normal current I determines the shape of

quasiparticle chemical potential uq through the connection between the slope of uq and In,
duq/dx ~ eInp/A, where p is the resistivity of the normal wire and A is the cross-sectional

area. Since the pair chemical potential up is almost constant throughout the whole charge



~2
(a) =
Core
\/
\\/ \ 1
N
< Ag > Xpsc‘_ Ag™
(b)
—F
=1
>@.
—-U) )
0 1 2 t/T pSC

(d)

Xpsc

Fig. 2.2.3 SBT model of a phase-slip center. (Adapted from R. Tidecks
(Ref.[20]) and M. Tinkham (Ref. [18])).
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imbalance region, one can also write d(uq-up)/dx ~ eInp/A. Integrating through the whole

charge imbalance region, one obtains the voltage difference across a PSC:

V= 2AQ~p aI- Ic/2)/A. (2.2.14)

Using a model based on PSCs induced by thermal fluctuations near T, Langer and
Ambegaokar [68] (LA) successfully described the phase transition near T.. In their picture,

a PSC moves the system from one local minimum of the Ginzburg-Landau (GL) free

energy to another which is separated from the first by a change of 2x in the phase of the

order parameter [18]. They were able to calculate the free energy barrier that the system
has to overcome in order to generate a phase-slip event. Later, McCumber and Halperin
[69] used time-dependent GL theory to obtain a temperature-dependent “attempt frequency”
which describes the mean net phase-slip rate. The model of statistical thermal activation of
the phase-slip centers according to Langer-Ambegaokar and McCumber-Halperin (LA-MH)
and the model of current enforced and discontinuous nucleation of PSCs according to
Skocpol, Beasley and Tinkham (SBT) [66] work in different temperature regimes. The
temperature range where the thermal activation of PSCs is important is restricted to a very

narrow interval near T with a width of about 1 mK, while the current enforced nucleation
of PSCs extends to about 10 mK below T_. Consequently, the thermal activation effect is

best observed in high purity samples, i.e. whiskers, where the resistive transition is not
additionally broadened by sample inhomogeneities which typically occur in thin films. The

parameter controlling the width of the relevant temperature interval is the height of the
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energy barrier for a phase-slip event, which is proportional to the sample cross section as is

implied in Eq. 2.2.14.

2.2.5 Resistance anomaly and excess voltage

Charge imbalance, either near a NS interface or a PSC, is usually manifested in charge
transport by two phenomena, i.e., a resistance anomaly and an excess voltage. The
resistance anomaly shows up as an enhancement of the resistance value higher than its

normal state resistance R near the critical temperature T.. This resistance anomaly is

related to a voltage in excess of the linear normal state voltage in the dc I-V characteristics.
The basic physics behind these two phenomena is the two chemical potential model
described in previous sections. Fig. 2.2.4 shows two pictures of how these two
phenomena are detected by the usual four-probe transport measurement (Chapter 3). Fig.

2.2.4(a) is the case of charge imbalance near a NS interface. Inside the normal metal (N),

only one chemical potential M can exist. With a finite potential across the sample, Hy
varies linearly with position. In contrast, there exist two chemical potentials, uq and p.p,
near the NS interface inside the superconductor (S). p.q decays over a distance

characterized by the charge imbalance length A_- while up varies on the much shorter

Q

length scale £. A voltage probe V- placed inside the charge imbalance region measures uq

or W, depending on whether it is in a normal or superconducting state. A normal voltage

probe detects uq while a superconducting probe detects lJ.p. The other voltage probe V+
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Fig. 2.2.4 Phenomenological picture of two chemical potentials model in the
charge imbalance region near (a) a NS interface (b) a phase-slip center when a
current is applied. The voltage probes (V+-) placed inside the charge imbalance

region detect {1, and |1, when they are in superconducting and normal states
respectively.
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(made of the same material as N) directly detects My

In the resistance anomaly experiment, only an ac current is applied. V- switches

from a normal state to a superconducting state as the temperature is cooled through T.

Therefore the potential difference detected by V+ and V- increases since V+ always

measures W, while V- measures the potential under a transition from u to uq and to p.p

eventually, but only if the V- probe is less than a distance A Q avay from the interface. As

a result, the resistance observed is higher than the normal state resistance. If both V+ and
V- are placed inside the charge imbalance region of S, with V+ possessing a critical

temperature T | a few millikelvin below T of the superconductor (and V-), V+ and V-
would measure a potential difference between uq and up at some intermediate temperature

between T | and T, and the resistance anomaly would also appear.

The explanation of the observation of the excess voltage is similar to that for the
explanation of resistance anomaly. Assume V+ and V- are on the normal and
superconducting side of the interface respectively. As the dc current approaches the critical

current [ of the superconductor, a charge imbalance region is induced in S near the NS
interface, being more pronounced as I is closer to I . Therefore, V+and V- would detect a

potential difference higher than the linear normal state value as a function of dc current. In
mesoscopic systems, the differential resistance dV/dl is usually measured instead of the I-V

characteristic. An additional ac current is then imposed on the dc current (Chapter 3).
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dV/dI measures the slope of I-V curve at each current. Since the excess voltage in an [-V
curve shows up as a small bump in voltage just above the nonlinear portion of the
superconducting I-V characteristic (Fig. 2.2.4(b)), the detected dV/dI first shows a positive

resistive peak at I=I , followed by a negative dip at a slightly higher current, and eventually

reaches a constant normal state value at higher currents. The negative dV/dI was
demonstrated by Yu and Mercereau [70] in a beautiful experiment on a normal-
superconducting wire in 70’s. Recently, it was also observed by Park e al. [5] and C.

Strunk et al. [9].

The two chemical potential model can also explain the resistance anomaly or excess
voltage in a system where one or more phase-slip centers exist. In this system, charge
imbalance is induced on both sides of the PSC (see Fig. 2.2.4(b)) and the model described
above is applied to a SNS system. In next section, we briefly describe some important
previous experiments that demonstrate the influence of charge imbalance in the transport

problems of NS systems.

2.2.6 Previous experiments in charge imbalance
In the classic experiment by Clark [22], quasiparticles of high voltage are injected into a tin
film (serves as a S) from an aluminum film (serves as a N) through a tunnel junction so that

they are the dominant electron-like particles. A charge imbalance region was therefore

created in the tin film. The difference between uq and up is detected by measuring the

voltage difference between the tin film and a normal-metal film coupled to the tin film. The

voltage difference thus detected is related to the charge imbalance relaxation time T of the

tin film. Taking the conductance of the tunnel junction into account, Clark was able to fit
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the data to a formula connecting the measured voltage and ‘cQ-. The formula differs from

that obtained from the RSM model mentioned in section 2.2.3 by adding the temperature

dependence of the tunnel junction conductance in the voltage difference between uq and up.

The result showed a dramatic increase in 1:Q- near Tc of the tin film, and a saturation at

temperatures far below T , in agreement with the theoretical prediction.

An alternative way of detecting charge imbalance was given by Dolan and Jackel
[27] who measured the space dependent nature of the charge imbalance relaxation near a

PSC. Fig. 2.2.5(a) shows a sample schematic of the experiment as well as the sample

picture. A 1 pm wide tin strip with a notch was fabricated with several equally-spaced S

and N voltage probes placed along two sides of the tin strip. A PSC is preferably created at

the notch. As a result, a charge imbalance region exists near the notch when a dc current is

applied and S and N probes measure p.p(denoted by V S and uq (denoted by VN) directly
along the imbalance region. As shown in Fig. 2.2.5(b), V is constant and V varies over

a distance ~ 10 um.

The influence of charge imbalance on the differential resistance dV/dI was
demonstrated beautifully in a narrow WS wire by Yu and Mercereau [70], where W

denotes a weak superconductor of which T _ and I_ are lower than those of S. Fig. 2.2.6

shows the experimental result as well as the sample schematic. An ac current

superimposed on a dc current is injected from S to W along the wire. Near the WS
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Fig. 2.2.5 Detection of charge imbalance near a phase-slip center (PSC). (a)
sample schematic. A notch was to facilitate the formation a PSC. (b) The voltage
measured with superconducting (V) and normal leads (V,) directly show the

spatial dependence of i, and p1,. (From Dolan and Jackel, Ref. [27]).
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Fig. 2.2.6 Differential resistance as a function of dc current measured near a

superconductor-weak superconductor interface. Curve A measured with probes A
shows the transition of the region W at critical current Icw and that of the region S
at Ics. Curve B measured with probes B shows the slope of the potential difference

(up-p.q)/e. (From Yu and Mercereau, Ref.[70])
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interface, charge imbalance takes place due to conversion of Cooper pairs into
quasiparticles. Two sets of voltage probes are used to measured the differential resistance
dV/dl. Probes A contains a microscopic S and a W lead iocated in the S and W side of the
WS interface respectively. They are placed far away from the WS interface and therefore
detect no charge imbalance. The purpose of probes A is to show the resistive transition of

the W region at I=[_ and that of the S region at I, so that the charge imbalance can be
clearly identified in the region I, <I<I_.. Probes B (also a S and W lead), on the other

hand, are placed in the S side region near the WS interface with a W lead located farther

away from the interface than the S lead, having the same property as W region. Hence, the

voltage measured represents uq-up. As the current is increased from Icw, a clear negative

dV/dl is observed using Probes B, being larger near I, in consistent with the two

chemical potential model described in the last section.

As the dimensions of the samples are decreased, charge imbalance was also
observed in pure mesoscopic superconductors. In the experiment of Santhanam ez al. [1],
the resistance anomaly was observed in a 1D aluminum wire without any intentionally
created PSC or N3 interface. This resistance anomaly (Fig. 2.2.7(a)) was explained as the
consequence of a charge imbalance region near a dynamic PSC is the sample. This
explanation was based on some further tests of the properties of charge imbalance in the
sample. First, the resistance anomaly was only observed in some short segments of the
Fig. 2.2.6 sample which is in consistent with the charge imbalance relaxation picture.

Second, at the temperature T .« corresponding to the maximal resistance peak in R(T), the

differential resistance shows a small bump at zero-current (Fig. 2.2.7(b)). As T moves
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different segments of a 1D Al wire. Short segments (A, B, C) show clear enhanced
resistance above the normal state resistance. (b) Differential resistance of segment
A in (a) as a function of dc current measured at different temperatures near the
maximal resistive peak of segment A. (From Santhanam ez al. Ref.[1]).
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away from T _, the resistance bump is reduced and eventually reaches its normal state

resistance at higher temperatures. Third, the resistance anomaly is suppressed when a
small magnetic field of a few gauss is applied and completely disappears at a field of
magnitude ~ 20 gauss. While these tested properties all show the sign of charge imbalance,
the location and origin of the dynamic PSC was not identified. In the experiment of Kim er

al. [4], similar results were observed.

In the experiment of Park et al. [5], a clear dynamic PSC was created in a system
similar to that of Yu and Mercereau. This dynamic PSC moves along the W region as the
dc current is increased from zero. As a result, a nonlocal charge imbalance was observed
through a series of negative dV/dI dips measured with various W and S voltage probes
along the WS wire. Each negative dV/dI results from the fact that a PSC enters a new
region between two voltage probes at a distance of few microns away from the segment
where the differential resistance was measured. Although this experiment successfully
identified the location of the PSC and showed an interesting nonlocal property, the system
was two dimensional. Furthermore, it is not a pure superconductor. Therefore, the

questions raised by the experiment of Santhanam et al. {1] remain.

In Chapter 4, we will discuss the resistance anomaly in our experiments on
mesoscopic superconductors similar to that of Santhanam er al. [1]. The resistance
anomaly observed in our system differs from Ref. [1] in the fact that it is induced by
applying external parameters, i.e., radio-frequency radiation, magnetic field, and noise

current.
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2.3 Proximity effect

The theory discussed in the sections above deals primarily with nonequilibrium
superconductivity. In this section we turn to the normal-metal side of a N-S boundary.
The related physics is the so-called proximity effect in which the superconductivity can
penetrate into the normal metal by inducing pair correlations across the N-S boundary. We
first briefly describe the proximity effect within the Ginzburg-Landau (G-L) picture in this
section. In next section a theory based on quasiclassical Green functions will be introduced

in order to explain some recent experimental observation of the proximity effect.

Based on G-L theory, the proximity effect near a N-S boundary in one dimension

can be described by the order parameter y(x). In the superconductor, the G-L equation for

Y(x) can be linearlized since y(x) is small [33]:

2 d’y(x)
%——T‘zz— = —oy(x). (2.3.1)

where o is a function of temperature. The boundary condition for Eq. 2.3.1 is:

dy(x) | _ w(x)
[ dx ]“o— b (2.3.2a)

Yx-o) =0 (2.3.2b)
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where b is a parameter depending on the thickness and the properties of the normal metal

and x measures the distance into the normal metal from the NS interface. y(x) from the N-

S boundary can be shown to have the asymptotic form [33] (using Eq. 2.3.1 and 2.3.2):

v(x) = oxe (2.3.3)

where ¢(x) is a slowly varying function of the distance from the N-S boundary and b is

converted into the penetration length §N In the clean limit ,

hve
En= , (2.3.4)

2nk, T

where Ve is the Fermi velocity in N and kB is the Boltzmann constant. In the dirty limit, éN

is replaced by the normal metal coherence length:

"D
E(T) = (2.3.5)
2nk, T

where D = vF('/3 is the diffusion constant and ( is the electron mean free path. Fig. 2.3.1

shows the behavior of the G-L order parameter near a NS interface in the diffusive regime.
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Fig. 2.3.1 Description of the proximity effect based on Ginzburg-Landau theory.
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y(&) decays exponentially over a length &N(T) and approaches zero eventually. The
consequence of the proximity effect is a decrease in the resistance R of the normal metal.

As we can see in Eq. 2.3.5, éN(T) increases as the temperature decreases. Therefore, one

expects that R decreases monotonically as a function of temperature.

2.4 Quasiclassical Green functions theory

The proximity effect described in last section is determined by the space dependent G-L
order parameter. However, as was realized by researchers, Andreev reflection [36] is the
microscopic mechanism responsible for the proximity effect. A consequence of Andreev
reflection is the existence of electron-hole pair coherence in the normal metal which is
energy dependent. Therefore, the proximity effect is also dependent on the energy of the

electron. Furthermore, G-L theory is only valid near T  and hence provides no information

for the proximity effect at temperatures far below the transition temperature. The first
attempt at describing the proximity effect was by Blonder, Tinkham, and Klapwijk [71]
(BTK), who solved the Bogoliubov equations for a NS interface combining both Andreev

and ordinary reflections to obtain the electron-like and hole-like wavefunctions. By

assuming a d-function potential barrier of variable strength at the NS boundary, BTK were

able to compute the conductance of a NS interface. The result beautifully describes the
interface conductance influenced by the interface barrier as well as the energy of the
electrons. However, BTK assumed simple plane waves for particles in the normal metal.

Therefore, the theory offers no information on the proximity effect in the presence of



43

impurities in the normal metal. Unique phenomena such as the zero bias anomaly (ZBA)
[72] and enhanced Aharonov-Bohm effect [44] have been observed, confirming the
importance of the role of quantum coherent effects inside the normal metal. An approach
similar to BTK has been extended to include impurity scattering in the normal metal [73-
75]. In the attempt by Marmorkos, Beenakker and Jalabert [75], the conductance of the
NS system is expressed in terms of transmission matrices and is obtained by numerically
computing the transmission coefficients of the matrices. While this approach has
successfully explained several results, the transmission matrices are usually not easy to

calculate [47].

An alternative way of treating this problem is based on the development of
quasiclassical Green functions theory [46-53, 76-80]. Instead of calculating the
transmission matrices, this theory obtains a set of equations for the impurity averaged
Green functions. With the aid of appropriate boundary conditions for different systems,
impurity-averaged transport properties are directly obtained from these equations. Since
this approach has been successful in accounting for the proximity effect of most NS
systems where N is in diffusive regime, we briefly describe this theory in the following

sections.

2.4.1 Green functions in a dirty superconductor

The Green functions technique describing non-equilibrium superconductivity in an
inhomogeneous superconductor or in a normal metal with proximity effect is based on the
Keldysh diagrammatic technique [81]. In Nambu space, the matrix form of the Green

functions is [46-53]:



(2.4.1)

S

0o G*

where G*, G®and G* are the advanced, retarded, and Keldysh Green functions. Here the

“ ™ “ denotes 4x4 matrices, and the “ * “ denotes 2x2 matrices which are given by:

G'(1, 1) = [131((11,,11")) —FG(I(III))] (24.2)
where i =R, A, K. The normal and anomalous Green functions are given by :
G111 = —ioet, - t,) {[whyra)],) (2.4.3a)
G (1,1 = i8ct,~t,) {fwhy ()], ) (2.4.3b)
G*, 1) = —i{fwmyan]) (2.4.3¢)
FR(L1) = —ioct, - ) {[w.wan]) (2.4.3d)
FALL) = 0, t) ([wDowan],) (2.4.3¢)
F*.1) = i{[y . an]) (2.4.30)

where y(1) = w(tl, rl) is the electron field operator, <> denotes the statistical average in

the equilibrium state of the system, and [] , and [] denote the anti-commutator and the
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commutator respectively. Two properties are observed from Eq. 2.4.3. First, the Keldysh

Green function G ¥ differs from the conventional retarded and advanced Green functions
G* and G* in that it contains no time ordering, and contains a commutator instead of an
anti-commutator. Second, the normal Green functions G' are one-particle Green functions

and describe normal correlations, while the anomalous Green functions F' are pair Green

functions and describe superconducting correlations. (i=R, A, K)

In the quasiclassical approximation [49-50, 82-85], one can introduce the so-called

quasiclassical Green function g, which has the form of:
5kt ) = — [de,G(rk.t,,t,). (2.4.4)
T

where

e = 'k*2m -,

G(r,k) = [ dr'exp(— ikr' /%)G(r+5r' ,r—5r'),

r=(r, +r,.)/2 and r’=r, - r,.. The quasiclassical Green function thus defined only

1
depends on the direction k of the momentum k, while the magnitude k is fixed at the Fermi

wave vector k.. This is because we have made the assumption that all the physical

quantities of interest vary spatially on a length scale much larger than the Fermi

wavelength. The normalization for the quasiclassical Green function is:



46

[dt, g, b8, t) = 18, —t,.). (2.4.5)
In the diffusive regime we can expand § to first order in spherical harmonics:
g = gs+ kgk’ kgk<gs’ (2~4'6)

where g, is related to g, through the normalization condition Eq. 2.4.5. The Green’s

function is then averaged over all angles of k. In the stationary case the Green function

only depends on the time difference t = t, - t,. Taking the Fourier transform with respect

to T one obtains the equation of motion for the Green function and the normalization

condition:

-DV (. Vg, + i[H,8.] + il£.8.] = 0, (2.4.72)

gl =1, (2.4.7b)

where g = [ dtg (T)exp(iet), D = v (/3 is the normal state diffusion constant, and ( is the
F

elastic mean free path. The self-energy matrix £ describes processes due to spin-flip

scattering and inelastic scattering with phonons. The Hamiltonian H is given by
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H=epl +€3,+A, where @ is the electrical potential, € is the electron energy relative to the

Fermi energy and A and &, are given by:

Aol 0 A
X = , A= (2.4.8a)
0 A -A" 0
8, 0 (1 0 ]
S, = , 8, = , (2.4.8b)
“ loe,) * 0-l

where A is the pair potential in the metal.

Eq. 2.4.7 is the Usadel equation [54] in Nambu space. Elastic impurity scattering

has been taken into account in the Born approximation, causing the presence of the elastic
mean free path { in the diffusion constant. Eq. 2.4.7 has to be completed with the

self-consistency equation for the pair potential in the normal metal:

Ar) = N(40i)v gdeTr{GK(Gx—id'y)}' (2.4.9)

where V is the strength of the pair interaction and N(O) is the electronic density of states at

the Fermi level.
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The retarded and advanced Green functions determine the characteristics of the
quasiparticle energy spectrum while the Keldysh Green function describes the way the

particles are distributed at each energy and temperature. G* can be expressed in terms of

G®, G* and a distribution function matrix 7:

AK _ aR2 A
g =8.f-T& (2.4.10a)

F=fol+f;6,. (2.4.10b)

where f, and f; are the odd and even components of f with respect to the Fermi energy

respectively. To solve the transport problem, the spectrum at equilibrium is first
determined by solving the retarded Green function component of the Usadel equation
combined with appropriate boundary conditions associated with the particular system. The
Keldysh component is then solved in combination with the boundary conditions for the
distribution function when the system is driven out of equilibrium. Finally, the physical

quantities of interest are calculated using the three Green functions 3*, §* and §*.

2.4.2 Boundary conditions
The boundary conditions for the quasiclassical Green functions have been derived by

Kuprianov and Lukichev {85]. The formula reads:

Gn
5S§0,8 = —- [§(x,.), B(x,.)] 24.11)
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where & is the conductivity of the wire, S the cross section of the wire, X, and Xp, denote

the coordinates on two sides of the interface and G| is the normal state conductance of the
interface. Eq. 2.4.11 confirms the continuity of the Green functions across the interface.
This continuity equation can be interpreted as the conservation of the “spectral current”
8G VG. The existence of the interface conductance is obvious since it influences the
proximity effect through the Green functions. However, one should note it is the ratio of

the conductance of the interface to the normal wire that determines the penetration strength

of the proximity into the normal metal.

The next step is to determine the boundary conditions at the normal and

superconducting reservoirs. In the case of sufficiently small quasiparticle, thermal and

Thouless energies; &, kBT, hD/L? << A, Stoof and Nazarov [50] rewrote & as:

€ A

A A -1

7 Je-oy-ur

s (2.4.12)
-A" -¢

where J is an infinitesimally small positive number. In a normal reservoir, A = 0 and

gr=-6,. In a superconducting reservoir with phase ¢ , A:Aseiq’ and

g}=6, sind+ G,cos¢d. The retarded Green function is given by the equation:
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g =—6,8%6, (2.4.13)
Finally, the Keldysh Green function can be decomposed into an even function 7, and an

odd functionf,:

F=fol +f£;6; (2.4.14)

where f, and 1 are given by the following forms in a reservoir biased at a voltage V and at

temperature T:
1 e+eV £e—eV
fo= E(Ianhﬁ-i-tanhﬁ) (2.4.15a)
B B
1 e+eV e—-eV
B B

2.4.3 Parametrization of the Green functions

Using the normalization condition, the quasiclassical Green functions governed by the

Usadel equation can be parametrized. This makes them easier to manipulate. G*and G*

are parametrized in the following form:

cos® e *sind
Gh= (2.4.16a)

e?sin@ - cos@
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G*=

—cos®" e “sind"
(2.4.16b)

e?sin®° cos®"

where 6(r, €) is a complex function and ¢(r, €) is a real superconducting phase. The

Usadel equation in one dimension in the absence of magnetic field can be expressed as

follows [48, 53, 86]:

[o>]

»D 8’
2

PP + (ie — hy,cos0)sin@ + A(x)cos® = 0. 2.4.17)
X

where Y is the spin-flip scattering rate and the inelastic scattering rate is neglected. The

boundary conditions for the interface then read:

(6S)38,0(x, €) = G,sin[0(x,,)—6(x,_)}] (2.4.18)

and for the S and N reservoirs:

6=0 in a N reservoir (2.4.192a)
1. A+se
—+i=In fore < A
2 2 A-¢
0 = 3§ in a S reservoir (2.4.19b)
1. e+A
i fore > A
e—A
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The self-consistency equation for the pair potential becomes:

LY

A() = N(O)g | tanh(5—= )im{sin0]de. (2.4.20)
[V} B

2.4.4 Some remarks on the theory

Some important concepts of the Usadel equation are presented in this section. The

properties of the parametrized angles, i.e., 8 and ¢, can be surnmarized in a simple physical

description introduced by Yu. V. Nazarov [47]. Neglecting spin-flip and inelastic

scattering, and assuming zero pair interaction in the normal metal, 8 becomes a real
function at zero energy. One can describe 8 and its boundary conditions by a real unit

sphere [47, 53] as shown in Fig. 2.4.1. The proximity effect along a normal-metal wire
connected to a N reservoir at one end and a S reservoir at another can be described by any

point on the surface of the unit sphere. The north pole represents the normal state (6 = 0)
while the equator represents the superconducting state (6=m/2). If there exist two
superconductors the phase difference ¢ between the two superconductors is represented by
the angle ¢. The physical quantities involved in the proximity effect are therefore

modulated by ¢. Experimentally, one can modulate ¢ by applying a magnetic field

threading a hybrid loop, part of which is superconducting and the rest normal.
Alternatively, one can also apply current through a long superconducting wire to change its

phase gradient along the wire. Hence, normal metals connected to different parts of the S
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Sy

Fig. 2.4.1 A real unit sphere describing the proximity effect in a normal metal (N)

connected to two superconductors (S| and S3) at zero electron energy. The north pole
represents the N reservoir and the equator represents the S reservoir. Between the N and S
reservoirs the proximity effect is described by any point on the surface of the sphere. Point
A represents the proximity effect described by a parametrized angle 0 obeying the Usadel

equation and modulated by a phase difference ¢ between the two superconductors S| and
S,.
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wire acquire different phases [42-44, 87-88].

The proximity effect described by the Usadel equation is a long range pair
correlation. Consider a rather long normal wire connected at its two ends to a N and a S
reservoir respectively. The pair correlation induced by the S reservoir exists everywhere

along the wire since it starts with a finite complex value at the S reservoir and vanishes at

the N reservoir. 8(e, x) along the wire depends not only on the position but also on the

energy, which is different from the proximity effect based on the Ginzburg-Landau picture

[33]. This is observed in Eq. 2.4.17 which shows 6(g, x) decays qualitatively over a

length scale the order of (hD/e)!2. Ase approaches zero, the decay length becomes very

long and the pair correlation extends to the whole system. The manifestation of this long

range correlation in the transport properties is described by an effective diffusive coefficient

(D(g, x)) in the normal. Along the normal wire of length L, D(g, x) shows a maximum at

some intermediate energy of the order of Thouless energy ®D/L? of the system, recovers its

normal state value D both at zero and at high energies as shown in Fig. 2.4.2. The strange
behavior of the reentrance effect occurs when the decay length exceeds the dimensions of
the system. At zero energy the decay length is infinite and a pair correlation exists but the
effective diffusion coefficient is equal to its normal state value. Therefore the resistance of
the normal metal regains its normal state resistance. We will show this effect explicitly in
Chapter 5 when we apply the quasiclassical Green functions formula to the experimental

results of several NS samples.
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1.1 |

D¢, x)/D

&E,

Fig. 2.4.2 Normalized effective diffusion coefficient D(g, x)/D as a function of

reduced energy €/E. at any location x along a normal-metal wire of length L
connected to a normal reservoir in one end and a superconducting reservoir in the
other. D and E. are the normal state diffusion constant and Thouless energy

respectively, where Ec=hD/L2.
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2.4.5 Previous experiments on the reentrance effect

In the beginning of this section, we use a plot obtained by Nazarov et al. [SO] (see Fig.
2.4.3) to explain some important properties of the proximity effect based on the
quasiclassical Green functions theory applied to a diffusive metal connected to a
superconductor. The sample geometry is shown in the inset of Fig. 2.4.3, where a cross-
shaped diffusive metal is connected to a superconducting loop at two NS interfaces. This
superconducting loop provides a way of changing the phase difference between the two NS
interfaces. The resistance of the segment between point A and A’ would be measured by a
four-probe ac lock-in technique described in Chapter 3 with the ac current applied along the
direction of the arrows. Various curves in the plot correspond to the normalized resistance
of the segment between point A and A’ as a function of temperature T at different values of

the phase difference between the two NS interfaces, where T is incorporated in the formula

2 . . -
&N“=D/1tT . At a particular temperature, one can see the resistance oscillates between the

top and bottom curves corresponding to a phase difference equal to © and 0 respectively,

which shows a period of oscillation equal to 2r. The manifestation of the reentrance effect

in transport is usually shown in three measurements, i.e., resistance as a function of
temperature R(T), differential resistance as a function of voltage dV/dI(V) and the
amplitude of the magnetoresistance oscillations as a function of temperature. These
features are clearly seen in Fig. 2.4.3. For R(T), each curve shows a minimum resistance
at an intermediate temperature while the normal state resistance is recovered at zero and

high temperatures. For dV/dI(V) one can replace kT with eV and obtain behavior similar

to R(T). The reentrance effect revealed in the amplitude of magnetoresistance oscillations is

shown in the resistance difference between any two curves in Fig. 2.4.3. This resistance
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Fig. 2.4.3 Calculated normalized values of the resistance R/Ry between A and

A’ (inset) as a function of temperature at different phase difference between two
superconductors S. The current flows in the direction of arrows and the voltage is
measured between the other two N leads. The phase difference varies from 0

(bottom curve) to T (top curve). The temperature is incorporated in the form
En?=D/nT. (From Nazarov et al. Ref. [S0]).
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difference represents the amplitude of oscillations, which increases as the temperature is
decreased, reaches a maximum, and decreases again at lower temperatures, being equal to

Zero at zero temperature.

So far, to our knowledge, the reentrance effect has been observed in two systems.
One is in a semiconductor connected to a superconductor (Sm-S). The other is in a

diffusive metal connected to a superconductor (N-S).

In the Sm-S system, den Hartog etal. [15, 16] reported reentrant behavior in a
geometry where a diffusive two dimensional electron gas (2DEG) is coupled to a
superconductor to form a loop. The reentrance effect was observed in the measurement of
dV/dI(V) and the amplitude of R(H) oscillations as a function of V. Later, Toyoda et al.
[17] observed the reentrance effect in the magnetoresistance oscillations of a 2DEG
connected to a superconducting loop. Due perhaps to the difficulty in controlling the shape
of the 2DEG, it is not easy to quantitatively compare these experiments with the theoretical
prediction, although they are qualitatively in agreement with the theory of quasiclassical

Green functions.

In the N-S system, Courtois et al. [40], first observed the reentrance effect in R(T)
in a Cu ring sample with two superconducting stripes. The reentrance was observed in
R(T) when the measuring current was large enough to destroy the Josephson current
coupling the superconductors [12]. Fig. 2.4.4 shows these data from the experiment of

Ref. 12 with the sample schematic in the inset. The first resistance drop near T, of the

superconductor (Al) is due to the onset of the superconductivity. When a small measuring

current is used the Josephson effect between the two superconductors causes another
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Fig. 2.4.4 Resistance as a function of temperature for the sample shown in the

inset with four-probe measurement with I+ and V+ shown in the picture. The two
vertical stripes on the two sides of the loop are superconductors. With a 12 nA ac
probe current, the curve shows a second drop at 350 mK corresponding to the
Josephson effect between two superconductors. With a higher probe current of 1

KA, the Josephson effect disappears and the reentrance effect shows up instead.
(From Courtois et al. Ref.[12]).
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resistance drop followed by a plateau in resistance. This second resistance drop disappears
when a larger measuring current is used and instead, a reentrance is observed as is shown
by the dashed curve. By removing one of the superconducting stripes, Charlat et al. [13]
were able to observe the reentrance effect in the resistance as a function of temperature for
different mulitples of the flux quantum h/2e threading the Cu ring. At about the same time,
Petrashov et al. [14] also observed the reentrance effect in the amplitude of
magnetoresistance oscillations of a piece of diffusive wire whose middle point is connected

to a S loop via two N branches.

While all these experiments concentrate on the qualitative aspect of reentrance
effect, a serious comparison of the theory with the experimental results is still lacking.
Furthermore, the three measurements, i.e., R(T), dV/dI(V) and the amplitude of
magnetoresistance oscillations, that show a reentrance effect had not been observed in a
single device. In chapter 5, we will discuss our observation of the reentrance effect in all
three measurements in a single N-S device. A quantitative comparison of our results with

the theory of quasiclassical Green functions will also be given.



Chapter 3

Sample fabrication and measurement

3.1 Sample fabrication

Most of the samples discussed in this thesis were made by the author using electron beam
(e-beam) lithography at Northwestern University. For the pure Al structures, single step
e-beam lithography [89-91] was used, while for the NS structures more complicated two
step e-beam lithography was used. Occasionally, photolithography [92] was used to
pattern larger portions of the samples and the bonding pads. These last samples were
mainly used in testing sample properties in the development of fabrication techniques since
they allowed testing of many ideas in a short time. The real samples measured were all

made by e-beam lithography for reasons which will be described in detail in later sections.

3.1.1 E-beam lithography

The e-beam lithography facility at Northwestern University consists primarily of a JEOL'
JXA-840 scanning electron microscope (SEM) which was converted to an e-beam writer.
Fig. 3.1.1 shows a simple schematic of the setup of an e-beam writer. The desired pattern

is generated via a raster program written at Northwestern University on an IBM PC. This

pattern is transferred onto an oxidized Si wafer covered with PMMA

(Polymethylmethacrylate) through a Digital-Analog Converter (DAC) card purchased from

1JEOL, Boston, MA

61
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Fig. 3.1.1 Schematic of e-beam writer facility setup converted from JEOL-
JXA840 SEM
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Microstar.> The signals after the DAC card are buffered by a home-made circuit built by

the author before entering the SEM and driving the electron beam (e-beam) in a raster
pattern. The raster program also feeds beam blanking signals to a magnetic beam blanker

inside the SEM column.

The beam current determines the actual dosage required to expose a pattern. It is
read by sending the e-beam into a home-made Faraday cup [90] fixed on the corner of the
sample stage in good electrical contact with the sample stage. A picoamp current meter is
connected to the bottom of the sample stage to monitor the beam current. Usually, for our
devices, a beam current of ~ 5-20 pA is used, while for the large portions such as the
contact pads a much larger beam current is used to save time. The main reason for using a
small beam current for small structures is to avoid the well-known proximity effect caused

by the high density of patterns [93].

After the sample is placed in the SEM column, the e-beam is first sent through a
condenser lens, then driven by magnetic scanning coils before entering the objective
apertures and lens to finally scan the sample surface. Four different aperture sizes can be

chosen in our system. In order to obtain a small beam current to write fine structures, the

smallest diameter of 50 um was chosen for the e-beam exposures. This allows one to write

a pattern using a beam current as low as 4 pA. A built-in objective lens wobbler was used
to center the objective lens aperture. The e-beam is focused on the surface of the Faraday
cup by first changing the working distance between the objective lens and the sample

surface. A stigmator further minimizes the aberrations. The focused beam is then sent into

2Microstar Laboratories, Inc. Bellevue, Washington.
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Faraday cup to be monitored by the picoamp current meter. To align the beam, one has to
adjust “GUN ALIGNMENT” knobs on the electronics panel for the correction of tilt and

shift of the electron gun filament or crystal until the maximum beam current is read on the

picoamp current meter. Fora LaB_ filament,? the maximum current is ~ 200 nA, while for

a tungsten filament,' the maximum current is usually smaller by a factor of 4. After this,

the e-beam is left in the Faraday cup until the filament is completely stabilized. Before the
beam is stabilized the centering procedure for the electron beam described above has to be
repeated several times. When an e-beam emitted from a stabilized filament is centered,
adjusting the GUN ALIGNMENT knob should not change the maximal beam current by
more than 10%. The time required for stabilization depends on the type of filament. For a

LaB, filament, it takes at least two hours after the filament is excited from its preheated

state. For a tungsten filament, it takes about one hour after the filament is turned on.

The basic process of single step e-beam lithography is shown in Fig. 3.1.2. After

the substrate is cleaned, a thin PMMA layer with a low molecular weight (~150K) is first
spun onto the substrate using a spinner purchased from Headway Research, Inc.* at a
speed which gives a thickness larger than the desired thickness of metal. The substrate is
then baked at 170%C in an oven for one hour. After baking, the substrate is retrieved from

the oven and cooled in air. A second PMMA layer with a higher molecular weight (~500K)
is then spun on top of the first PMMA layer and baked at the same temperature for one

hour. The substrate with the bilayer PMMA is then placed in the column of the SEM ready

SPurchased from FEI Co., Hillsboro, Oregon or Denka Co. Tokyo, Japan.

4Headway Research Inc., Garland, Texas
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for the e-beam exposure.

The desired pattern is transferred onto the wafer from a computer by driving the
e-beam to expose the desired structure on the wafer. Since PMMA is a positive resist and
the lower molecular weight is more sensitive to the e-beam, the exposure creates an
undercut after development as shown in the second step of Fig. 3.1.2. The pattern is then

metallized by evaporating the desired thin-film metal onto the wafer in a vacuum chamber at
a pressure less than 5 x 10°® Torr. After evaporation the wafer is removed from the

vacuum chamber and the undesired portions of the metal on top of the remaining resist are

lifted off.

In the fabrication of hybrid structures, a second step e-beam lithography is used
after the first thin metal film is patterned. The procedure only differs in the temperature at
which the substrate is baked and the baking time. This concern depends on the first metal
patterned. Usually a normal metal film such as gold (Au) or silver (Ag) is chosen to serve
as a normal metal in the proximity effect experiment. In our experience, the same baking
temperature and time can be followed for the second step of lithography if Au is used for
the first metal. However, if Ag is used, a lower temperature (~95 oC) and longer baking
time (~ 3 hours) is chosen. The lower baking temperature avoids destroying the already
patterned Ag film and the longer baking time helps dry the PMMA and avoids interlayer
mixing. Table 3.1 summarizes the procedure of the fabrication process. In the following
sections I describe the details for each step of the e-beam lithography process developed at

Northwestern University to fabricate nano-structures.
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Table 3.1
Detail procedure of two-step e-beam lithography

. Spin 700A 150K PMMA on a wafer. Bake the wafer at 170 °C for 1 hour in

an oven.

. Spin 500A 500K PMMA on the same wafer. Bake the wafer at 170 oC

for 1 hour in an oven.
Expose the wafer to e-beam with desired patterns.

4. Develop the wafer in MIBK:IPA (1:3) for 45 seconds at 21 0C.

5. Place the wafer in a vacuum chamber and pump down to 3 x 10-7 Torr.

O 00 3 O

Preevaporate the metal for 50A with the shutter closed. Pump down the
chamber to 3 x 10-7 Torr again. Etch the wafer with an in situ dc O, or Ar*

plasma at 1.5 kV, 40 mtorr for 30 seconds.

Pump down the chamber to 3 x 107 torr and evaporate the desired metal.
Remove the wafer from the vacuum chamber and soak it in acetone for 1 hour.
Lift off the resist by shooting the metal surface with acetone.

Clean the wafer and repeat step 1 to 8 except step 5 replaced by step 10.

10. Place the wafer in a vacuum chamber and pump down to 3 x 10-7 Torr.

Preevaporate the metal for 50A with the shutter closed. Pump down the

chamber to 3 x 10°7 Torr . Etch the wafer with an in situ dc Ar* plasma at 1.0

kV, 40 millitorr for 30 seconds. Pump down the chamber to 3 x 10-7 Torr

again.
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3.1.1.1  Substrates and cleaning

Doped silicon wafers, since they are conducting at room temperature, prevent electrostatic
damage of devices by shorting them. An additional oxidation on top of the wafer provides
an insulating layer at room temperature and allows one to check for the continuity of the
devices [90]. Another great concern is charge accumulation during dc plasma etching [94].
For all these reasons, a thin oxidation layer should be chosen. Alternatively, one can
pattern a grounding loop for the devices before etching and disconnect them just before

testing.

The Si wafer is cleaned with acetone and then isopropyl alcohol. Since acetone
vaporizes quickly, isopropyl alcohol helps keep the surface wet before the wafer is dried by
blowing with high purity nitrogen gas. Most of the dirt on the wafer surface will be taken

away by the acetone and isopropyl alcohol.

3.1.1.2  Oxidation of wafer

Oxidation is one of the key process in modern semiconducting integrated circuit (IC)
fabrication. The utilities of silicon dioxide include: it acts as a component of the MOS
structure, it isolates one level of metal from another, and it serves as a mask against the
diffusion of dopant into silicon [95]. Extreme care must be taken in handling wafers to

prevent possible contamination. One should always handle the clean dry wafers with

special gloves and tweezers. For our purpose a thin layer of SiO ) of ~0.07 -1 pm

thickness was grown on a Si wafer by thermal oxidation in a quartz tube with dry 0,

flowing through. For the aluminum structures prepared by one-step e-beam lithography,

oxidation layers of thickness ~ 700A were grown on bare Si wafers purchased from
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Virginia Semiconductor, Inc.’ using the chart shown in Fig. 3.1.3 [96]. After oxidation,
the SiO, on the back of wafer was etched away by buffer-HF for 5 minutes to ensure good
electrical contacts with the sample holder. Before etching, a thin resist layer was spun on
the front surface of the wafer to protect the oxidation layer. For the hybrid structures, Si

wafers with an oxide layer ~ 0.5 - 1 um thick were directly purchased from Polishing

Corp. of America.®

3.1.1.3 Resist

PMMA serves as the resist for patterning the masks in e-beam lithography. The resist was
purchased from Microlithography Chemical Corp.7 For the fabrication of plain Al wires

PMMA of 150K and 500K molecular weights were used in single step e-beam lithography.
The lower molecular weight resist is more sensitive to e-beam exposure and thus can create
an undercut for clean lift-off. @ The PMMA was dissolved in MIBK
(methyl-isobutyl-ketone) to create a solution of 2-3 % by weight. This is achieved by

mixing the PMMA with the proper amount of MIBK in a quartz bottle placed on a hotplate
maintained at a temperature less than 80°C, since PMMA is flammable [90]. The mixture

in the bottle was constantly stirred by a magnetic bar to accelerate the dissolution. Different
solvents can be chosen for particular purposes. A weaker solvent such as xylene has been

tested for the purpose of preventing interlayer mixing [90, 91]. In order to dissolve

SVirginia Semiconductor Inc., Ronoke, Virginia
6Polishing Corp. Of America, Santa Clara, CA.

7Microlithography Chemical Corp. Newton, MA.
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PMMA in xylene, one needs to keep stirring for over 48 hours. Completely dissolved
resist looks transparent and contains no PMMA particles in the solvent. Resist of good
quality is crucial for successful devices, since undissolved resist usually gives a
nonuniform thin resist layer and causes irreproducible results. Great care should be taken
in storing the resist since any dirt in the resist would cause defects in the devices. A resist
thus prepared gives a thin layer of few thousand angstroms at a spinning speed of few
thousand rpm. Fig. 3.1.4 is an example of two spin curves for two different molecular
weights. A PMMA of lower molecular weight gives a thinner layer at the same spinning

speed as a higher molecular weight.

The general procedure for spinning the resist is as follows: The wafer is first
cleaned by the procedure in Sec. 3.1.2.1. It is very important to keep the substrate dry
before spinning the resist. After cleaning, the substrate is immediately placed on the
spinner. To ensure a clean surface one can clean the wafer by blowing the substrate
surface with clean and dry nitrogen gas while spinning the substrate for few seconds.
When the spinner stops the resist is dropped onto the surface of the substrate and the
substrate is spun immediately. It is very important to cover the whole substrate with resist
in order to obtain a uniform coating. Furthermore, PMMA dries quickly. Therefore one
should always start spinning the substrate as soon as the whole substrate is covered with

resist.

3.1.1.4. Exposure and development

Devices were usually patterned within a 10 pm x 10 pm exposure field (See Fig. 3.1.5

(a)). With a 700A/500A bilayer PMMA resist, a dosage ranging from 600 to 900 uC/cm?
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Fig. 3.1.4 The spin curves for PMMA of two different molecular weights. The

PMMA is Dupont 2010, Microlithography Chemical Corp.
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(@)

(b)

Fig. 3.1.5 Examples of lithography patterns. (a) Small sample pattern for e-beam

lithography inside a 10 um x 10 um exposure field.(b) Large contact pads pattern
for photolithography. Also shown are the alignment marks (crosses).
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was used. Using a low beam current ~ 5 pA it takes less than 1.8 seconds to write a 10 pm

long, 0.1 pm wide line, so it takes less than 45 seconds to finish a single level exposure for

a sample containing 16 leads. However, it takes 9 seconds to finish a single bonding pad

of dimensions 200 um x 150 wm, large enough to allow several trys for successful wire

bonding. Therefore, it usually takes more than 4 minutes to finish a complete pattern
taking into account other factors such as focusing, alignment, etc, for a skilled operator.
This is obviously not a good choice from the business point of view. Still, e-beam
lithography has its own advantages, such as flexibility of patterning masks and capability
of producing a finer linewidth compared with photolithography. The solution for the above
problem is to pattern the large structures outside the exposure field of the actual device by
using photolithography. Fig. 3.1.5(b) shows an example of such a pattern. After the
pattern is metallized, the procedure in Table 3.1 is followed to pattern the real devices. A
major concern in this procedure is to keep good electrical contacts between two patterns
generated from two different processes. The general way to solve this problem is to keep
the film thickness of the outside patterns less than that of real devices. However,
decreasing the thickness of the bonding pads can also lead to difficulty in wire bonding.
To overcome this, one can increase the area of each contact. For this reason the e-beam

exposure field is sometimes extended until the minimal safe contact area is satisfied.

Focusing the electron beam and mutual alignment of different lithography layers
are two other critical issues which needs to be addressed to produce fine and reliable
multilevel devices. A PMMA layer by itself does not provide any contrast on which to
focus. The multilevel alignment marks shown in Fig. 3.1.5 are created to solve these

problems. By focusing and aligning on these alignment marks, one can place the fine
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pattern within the layer contact patterns with an accuracy better than 100 nm. Fig. 3.1.6
shows one of the devices made using this technique. An alternative focusing method for
creating very fine lines is to “burn” a small hole in the resist by using the “spot” mode in
the SEM. Since it is at the same level as the top of the resist in the exposure field, focusing
on the spot can produce even more accurate results. One can also check the astigmatism of
the beam by examining the roundness of the spot at high magnification. This technique
takes advantage of the clear contrast which occurs when PMMA is cross linked when it is

overexposed by the electron beam.

After exposure the wafer is developed in a developer made of MIBK mixed
with Isopropyl alcohol in the ratio 1:3 by weight for 45 seconds at 21 °C. The residual

developer is then blown away immediately with dry nitrogen.

3.1.1.5 Metallization

Metals of high purity 99.999 % for the devices were purchased from ESPI® or Alfa.® They
were deposited on the wafer in an Edwards 10 yacuum evaporator at a pressure less than §
x10°® Torr. The pressure was monitored by a cold cathode gauge. The metal was

thermally evaporated on a tungsten boat from R. D. Mathis'! and the film thickness was

8Electronic Space Products International, Ashland, Oregon.
9Alfa Products, Denvers, MA.
10Edwards, Wilmington, MA

11R. D. Mathis Co., Long Beach, CA.



Fig. 3.1.6 Anexample of a NS device patterned by e-beam lithography. The
lighter lines are Au (N) and the darker lines are Al (S).
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monitored with an Au coated crystal sensor from Sycon Instruments, Inc. 12 To obtain a

clean metal film with larger grain sizes a high deposition rate is preferred so that the

deposition can be finished in a short time before the pressure rises.

3.1.1.6  Etching

The key problem in the fabrication of N-S hybrid devices is in achieving a good N-S
interface. This is overcome by cleaning the normal metal surface with dc plasma prior to
the deposition of superconducting film. A schematic of the in situ etching setup is shown
in Fig. 3.1.7(a). The plasma is generated by applying a high voltage dc bias between the
sample plate and the shutter. The high dc voltage is supplied by a high voltage ac
transformer through a bridge rectifier whose schematic is shown in Fig. 3.1.7(b). The
pressure is monitored by a TC gauge directly connected to the chamber through a
feedthrough. Different gases can be introduced into the vacuum chamber for different

purposes. An O, plasma was used to clean the samples after development prior to

evaporation. Since the oxygen ions clean the substrate through chemical reaction with the
resist, lighter damage to the metal film results. Technically, it is better than etching by
argon ions, where the cleaning process is mainly via particle bombardment. The possible

disadvantage for O2 plasma is it may cause oxide residue in the undercut after cleaning.

This is a more critical problem in the two-step lithography process, where in our
experiments aluminum, which oxidizes easily, serves as the second metal. Consequently,

for the charge imbalance experiments, O, was selected as the gas for plasma etching, while

in proximity experiments Ar was selected. The substrate is attached to an electrode which

12Sycon Instrument, Inc., East Syracuse, New York.
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is biased at a positive voltage to the shutter for O, gas and at a negative voltage to the

shutter for the Ar gas.

Gas pressure, etching time, etching power are some of major factors which

influence the etch. It is, of course, a tricky process when hybrid structures are needed

since it is usually not easy to control the property of an interface of area less than 1072 um"'.

Furthermore, a thin film of thickness ~ 10? A is easily damaged by etching. It is good to

keep most of the etching parameters constant while only varying one or two parameters to
obtain the most reproducible process. For the reentrance experiments, the only parameter
varied was the etching time. Before the etching process the metal was preevaporated to get
rid of possible contamination of the metal surface. Dry Ar gas was then introduced and
kept at 40 mTorr by controlling the pumping rate of the diffusion pump and the gas flow
rate through a needle valve at the same time. A high voltage of 1.2 kV is then applied
between two electrodes. Charge accumulation is an important problem in dc plasma
cleaning. The nano device can be easily blown out by a high power dc plasma. Fig. 3.1.8
shows an example of a failed etching process. A device is usually blown from the interface
area if the etching power or time is too strong. A simple solution to this problem is to first
etch the sample for 30 seconds and then pump down the chamber to base pressure. This
repumping process takes less than 10 minutes in our system. The sample is then etched for
another 30 seconds after which chamber is pumped down to base pressure before the

deposition. The detailed etching process can be found in Ref. 94.

3.1.1.7 Lift-off

After metallization the sample is soaked in acetone for more than one hour. The undesired
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v WD 7

Fig. 3.1.8 A scanning electron micrograph showing the damage due to a strong

dc plasma in a NS nano device. The sample is usually blown from the NS
interfaces.
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part of the metal film is then washed away by shooting the sample surface with acetone. It
is important to avoid drying the sample surface before lift-off is complete. Alternatively,
one can place the substrate in a beaker filled with acetone and ultrasonically cleaning the
substrate. Since this process is very destructive, one should be very careful not to over-

clean the substrates.

3.2 Measurement

Fig. 3.2.1 shows the schematic of the measurement setup. The setup is composed of three
parts, i.e., the refrigerator, measuring electronics and data recording. All the electrical
lines are connected to the room temperature electronics from the refrigerator through two
terminal boxes which can ground all electrical lines and separate the measurement
electronics from the refrigerator. In the dilution refrigerator, these electrical lines are
composed of CuNi wires above the mixing chamber and copper wires between the mixing

chamber and the sample mounting block in order to provide strong thermal link between the
sample and the mixing chamber. For the He* cryostat and He> refrigerator, CuNi wires
were used from room temperature down to the He* or He? pot. The sample was mounted
on a variable sample block attached to the pot by a weak thermal link. The wires were

purchased from Supercon, Inc. 13 The two boxes also have high frequency n-filters with a

cut-off frequency of 10 MHz through which the excitation signals enter the samples and the
response is detected by the electronics. These filters prevent possible radio-frequency noise

coupling down to the fridge from the environment.

13Supercon, Inc., Shrewsbury, MA
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3.2.1  Sample handling and testing
All samples were wire bonded with a Kulicke & Soffa'* Model 4123 wedge bonder.

0.001" AlSi(1%) wires were used for all bonding. Extreme care should be taken in
handling the nano devices as they are very sensitive to static charge. The hybrid devices,
when patterned after lift-off, are very delicate. The resistance of the interface could change
dramatically in few hours when exposed in air. For this reason, all the samples were kept
in a liquid nitrogen storage dewar right after lift-off. Exposure to air was minimized before

cooling in the fridge. This is especially critical for Ag, which tarnishes in air very rapidly.

3.2.2 Low temperature cooling facilities

The basic principle of cooling uses the unique property of the two isotopes of helium - He?
and He*. A He*/He* mixture separates into two phases below a critical temperature
(tricritical point) of 0.86K, one rich in He? (concentrated phase), the other rich in He*
(dilute phase). The unique properties of the two phases are : First, the He’ can travel

through He* without interacting with it at all. Second, there is still some He concentration
left even at zero temperature. Therefore it is possible to obtain a very low temperature by
pumping the He? out of the mixture below the tricritical point. Detailed discussion of low

temperature techniques using liquid helium can be found in Refs. {97-100].

Three major cryostats were operated in these measurements. An Oxford'>

14Kulicke & Soffa Industries, Inc., Horsham, PA

150xford Instruments, Oxford, England
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Kelvinox 300 dilution fridge was used to cool the samples down to 30 mK to study the
proximity effect. The temperature was monitored by a home-made thermometer built by J.
Eom at Northwestern University [110]. It has an ac excitation as low as 5 nA to avoid
possible heating of the resistor. The temperature was controlled by a PID (Proportional -
Integral - Differential) temperature controller built by the author. This PID allows control
of the temperature to within 1 mK. Fig. 3.2.2 shows the circuit of the PID. It was

modified from the PID circuit in Ref. 101.

The second cryostat was purchased from Janis Research Company, Inc. 16 1t

cools the samples by pumping He’ in a closed system and is useful for measurements in
the temperature range between 4 K and 270 mK. The operation of this cryostat is as
follows. The He? gas is first absorbed by a charcoal pump and then condensed into a He>
pot by heating the charcoal pump. During this process the 1K pot is maintained at a

temperature less than 1.4 K by pumping liquid He* through an adjustable impedance line to
the He* recovery system. When all the He? is condensed the temperature reaches about 1.5

K. The He® pot is then further cooled to 270 mK by pumping the liquid He?> out of the pot

while maintaining the 1K pot below 1.4 K. This is achieved by cooling the charcoal pump
with He from the bath. The cooling rate of the charcoal pump is controlled by a capillary

with He* flowing from the bath through to the air. The He* flow rate is controlled and

monitored by a flow meter before being vented into the air. The whole procedure, when in
a hurry, takes less than 3 hours to cool from room temperature to base temperature and the

holding time is over 48 hours. Therefore it is an economical facility with great

16Janis Research Company, Inc., Wilmington, MA.
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performance. When the experiment is finished the cryostat is warmed up by simply heating
the charcoal pump or He® pot and dumping all the He® gas back to the storage tank on top

of the cryostat.

Temperatures at both the charcoal pump and the 1K pot are monitored by an
attached silicon diode thermometer whose I-V characteristics were provided by Janis, Inc.
These temperatures are read by a simple current source whose circuit is part of Fig. 3.2.3

designed by the author and built by M. Z. Lin at Northwestern University. The samples
are wire bonded and connected to the He? pot through the same procedure mentioned

above. A Matshushita resistor provided by Janis, Inc and a RuO, resistor attached to the

sample block are used to read the temperature of the samples. They are also monitored and

controlled by the same home-made electronics mentioned above through part of the circuit
in Fig. 3.2.3. This circuit also provides the power for heating the sample block, He> pot

and charcoal.

The last cryostat is a He* cryostat. It was built at Northwestern University by J.
Eom. The sample is simply connected to a 1K pot and cooled by pumping liquid He* out

of the pot through a fixed impedance line to the He* recovery system.

3.2.3 Measuring electronics

Since most of the samples measured had resistances less than 100 Q, an ac lock-in

technique combined with a high impedance current source was used to perform the

measurement. The home-made electronics were built or modified by J. Eom at
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Northwestern University. Fig. 3.2.4 shows some of the major electronic circuits.

Ac resistance measurement of the sample

The ac resistance can be measured directly using a lock-in amplifier and current source, or
using a four-point bridge circuit (Fig. 3.2.4(b))[90, 101-102]. For the measurement setup
using Fig. 3.2.4(a), the ac current is supplied by applying a low frequency (10~100 Hz)
voltage to the input of the circuit from an EG&G PAR124 or 124A lock-in amplifier.'’
The frequencies used were selected to avoid possible coupling from 60 Hz noise. The high

precision, low noise instrumentation amplifier AD624 purchased from Analog Devices'®

has an high input impedance ~10° Q. Combined with low input bias current operational

amplifier AD549 ( input impedance ~ 10'3 Q), the circuit in Fig. 3.2.4(a) provides a high

output impedance voltage to current converter with a constant current proportional to the
input voltage. Before the measurement is carried out, the circuit is phased by minimizing

the out-of-phase component of the response. The constant excitation current is then

measured by reading the voltage across a 9.87 kQ resistor in series with the sample current

leads using a lock-in amplifier. After the desired current is measured, the input of the lock-
in amplifier is switched to detect the voltage across the sample by connecting the input of
the lock-in amplifier to the voltage leads of the sample. To use the circuit of Fig. 3.2.4(b),

the four leads of the sample are directly connected to the four wires as shown in the figure.

17EG&G Princeton Applied Research, Princeton, NJ

18 Analog Devices, Norwood, MA
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The 1432-W decade resistor from General Radio USA?? has a precision of 102Qand a

high stability. Therefore it provides a reliable way of measuring mesoscopic samples.
This decade resistor is balanced with the sample resistance before the measurement. The
circuit is then phased by changing the phase offset until the out-of- phase component of the
response is unchanged as one varies the decade resistor. The ac excitation is measured by
reading the ratio of the voltage change on the lock-in amplifier to the change of the decade
resistance. After the ac excitation is calibrated the decade resistance is switched back to the
balance value. During the measurement, any change of the sample resistance is read
directly from the voltage change on the lock-in amplifier divided by the ac excitation. One

of the advantages of using the resistance bridge is its high sensitivity and stability.

Differential resistance measurement
To measure the differential resistance dV/dl, an additional dc signal is summed with the ac

signal via a summing amplifier (LF356)(Fig. 3.2.4(c)) before the total excitation enters the

current source. The dc current is supplied from the output voltage of a HP3325A2!
synthesizer at a low frequency of ~ 10%-10° tHz. This voltage is converted to dc current

through the voltage to current converter (Fig. 3.2.4(a)) and is monitored by reading the dc

voltage of the 9.87 k< resistor with HP34401A22 voltmeters through an AD624 amplifier

used as a buffer. The differential resistance is then obtained by detecting the ac signal with

20General Radio Co., Concord, MA.

21Hewlett Packard, Santa Clara, CA.

22Hewlett Packard, Palo Alto, CA.
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a lock-in amplifier. The resistors of various values following the AD624 in the circuit of

Fig. 3.2.4(a) allow one to adjust the dc current in various ranges. For our measurements
on the 1D Al lines, the critical current is less than 200 LA which can be easily achieved by
adjusting the maximal output of 3325A or the resistance value in Fig. 3.2.4(a). One can

also place the dc current source in parallel with the decade resistance bridge to perform the

dV/dI measurement.

Magnetoresistance measurement
The low magnetic fields needed in the experiments were obtained from superconducting

magnets. The magnetic field was swept by controlling the current through the magnet

using a bipolar KEPCO-IM or 20M?3 power supply in voltage mode. The sweep signal
was provided by a HP3325A% or a DS345 synthesizer.?* The current was sent through a
home-made low field box, in which a 1€2/10W wirewound shunt resistor is connected in

series with the superconducting magnet in the refrigerator. The magnetic fields in the
experiments of this thesis are less than 1000 gauss, which is larger than the critical field of
thin aluminum films (~600-800 gauss). This requires only a maximum current less than 1

ampere applied into our magnet according to the current-field conversion ratio for the 14
Tesla magnet attached to the dilution refrigerator or the 6 Tesla magnet for the He? or He*

inserts. This low current does not change the value of the shunt resistor significantly. The

magnetic field can be monitored by reading the voltage of the shunt resistor with

23KEPCO, Inc. Flushing, NY.

24Stanford Research Systems, Sunnyvale, CA.
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HP34401A2! voltmeters through an AD624 amplifier.

Finally, all the measured data were recorded by a program on IBM PCs, written
by J. Eom at Northwestern University through HPIB interfaces.?* One should always be

extremely careful in handling and testing mesoscopic samples since any electrostatic shock
can destroy the samples. Furthermore, noise problems are important in the transport
measurement of mesoscopic samples since the response signals are usually small. The
measurement setup should always minimize ground loops in order to avoid picking up
noise signals from the environment. On measuring samples, it is important to avoid
heating the samples. Examples of these concerns are given in the following paragraph as

the final remarks of this chapter.

For the sample heating problems, consider the example of a 100  sample.

Using a typical ac current of 100 nA rms, the power generated from Joule heating is ~ 1
picowatt. Whether this amount of power results in appreciable heating of the samples
depends on the manner in which heat is lost to the environment. Typically, by coupling to
the bath, one usually checks for heating self consistently by performing the measurement
several times using steadily smaller ac excitations until the measurement does not change as

a function of the ac excitation. As for the noise problem, without shielding, the typical 60
Hz noise in our measurements is ~ 200 nV /./Hz . With proper shielding of the electrical
lines and minimizing the grounding loops, this noise can be cut down to less than

5 nV/4/Hz, which is much smaller than the signal.

24National Instruments, Austin, TX.



Chapter 4

Resistance anomaly in mesoscopic superconducting
wires

This chapter is divided into three parts. The first two parts, which are described in sections
4.1 and 4.2 respectively, deal with measurements of the so-called resistance anomaly in
mesoscopic superconducting wires. In section 4.1, we discuss the results of
measurements on the role of radio frequency (rf) in inducing the resistance anomaly in
narrow 1D Al wires. In section 4.2, we show that mixing a low frequency signal with the
measuring signal also gives rise to a resistance anomaly. A comparison between the two
methods of inducing the resistance anomaly is given in section 4.3 and confirms the
intrinsic origin of rf induced resistance anomaly described in section 4.1. This work on the
resistance anomaly was performed in close collaboration with Professor Chris van
Haesendonck’s group at the Katholieke Universiteit in Leuven, Belgium. The last part of
the chapter is included in sections 4.4 and 4.5 which present measurements of mesoscopic
devices containing NS interfaces in the charge imbalance regime. The author is indebted to
C. Strunk of Katholieke Universiteit Leuven and B. Burk of Northwestern University who

had done the primary work in sections 4.1 and 4.2 respectively.

4.1 Resistance anomalies in pure Al structures induced by rf
signals

To our knowledge, the resistance anomaly in narrow one dimensional (1D)

superconducting wires was first observed by Santhanam er al. [1]. The physics
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responsible for this phenomenon is thought to be charge imbalance near a phase-slip center
(PSC) in the sample (see Chapter 2). This PSC-induced charge imbalance had been
observed in an earlier experiment by Dolan and Jackel [27], where a PSC was induced in
the sample by means of a notch. The fact that there is no clear evidence for a PSC or a NS
interface in the sample of Santhanam et al. has motivated more investigations on similar
systems. Soon after Santhanam et al., Vloeberghs at al. [2] observed anomalous Little-
Parks oscillations [2] in a 1D Al wire containing a square loop and explained these
anomalous oscillations in terms of the physics of charge imbalance. In a recent experiment
by Park et al. [5], the nonlocal nature of the PSC was further demonstrated in a 2D Al

sample.

In this section, we discuss our experiments on the resistance anomaly [6, 9]. After
a description of the samples in our experiments, we show that the resistance anomaly can
be induced in 1D Al samples by applying rf radiation or a magnetic field. This is
manifested in the transport measurements, R(T) and the I-V characteristic. The properties

related to charge imbalance are discussed in the data.

4.1.1 Sample properties and measurement setup

We have measured two types of samples. One type is a pure 1D Al line with multiple
voltage probes. This type of sample allowed us to investigate the spatial dependence of the
resistance anomaly induced by rf radiation. The second type of sample is a 1D Al line
containing a loop. This type of sample allowed us to investigate how a magnetic field
affected the resistance anomaly. The loop sample and all the measurements presented here

were made at the Katholieke Universiteit, Leuven.
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Fig. 4.1.1(a) shows an AFM micrograph of the Al loop sample (which we shall

denote Al Loop). The loop size is 1 um x 1 um. When a perpendicular magnetic field is

applied, one expects a periodic suppression of the order parameter in the loop at

temperatures near Tc due to classic Little-Parks effect [103]. The order parameter in the
loop is suppressed when T, is suppressed. Consequently, it is most likely to induce a
phase slip center inside the loop when its T, is suppressed by the magnetic field [1, 5, 6, 9,

27]. Two Al line samples are discussed in this chapter (which we shall denote Line#1 and
Line#2). The AFM micrograph of Line#1 is shown in Fig. 4.1.1(b) and the SEM picture
of Line#2 is shown in Fig. 4.1.1(c). The properties and dimensions of all three samples
are list in Table. 4.1. In view of the experiment of Dolan and Jackel [27], where a phase-
slip center was nucleated preferentially at one point by means of an artificial notch, it is
relevant to check whether there are any defects in the topology of our samples which may
act as preferential nucleation sites for PSCs. SEM and AFM pictures show that there is no
apparent defect in the film. Fig. 4.1.2 shows a detail of part of sample Line#1 along with
its height profile, confirming the smoothness of the thin film. The width of the sample is
larger than the variation of the film thickness and grain size by at least a factor of 5.

Consequently, it is unlikely that the grain structure would lead to the experimental results

discussed in this chapter. The relevant characteristic length &(T) is estimated using the
Ginsburg-Landau formula in the dirty limit [18]:

I
E(T) = 0.855 _ Gl (4.1.1)

T
T
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Fig. 4.1.1 AFM micrograph of (a) Al loop structure and (b) Al Line#1
structure. (c) SEM micrograph of Al Line#2 structure. ((a) and (b) from C. Strunk
et al. Ref. [9]).
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Sample | tthm) w(nm) Ry(Q) p(uQcm) D(cm%sec) T(K) &g (um)
43 140 8.4(V-Vy5.5(V,-Vy 2.3 70 1.294 0.14

30 200 6.4 (SegmentB) 3.8 48 1372 0.13
25 200 23 (Rige) 24 72 1324 0.14

Table. 4.1 Material parameters for the measured samples. Identical parameters for all
samples are: ply = 4 x 10-16 Qm?2 (see Ref. [104]), vp = 1.3 x 106 m/s, &g =
0.86(Egl.) 12, and Ey = 1.6 um. (Adapted from C. Strunk et al. Ref.[9]).
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Fig. 4.1.2 Detail of Fig. 4.1.1(c) with the segment B (see Fig.4.1.3(c)) showing
the anomaly and its two neighboring segments A and C. Also shown below is the
height profile along the center of the wire for the same part of the sample. (From
C. Strunk et al. Ref.[9]).
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where [ is calculated from a given result for the product pl =4 x 107! Qm? [104], p being

the resistivity of the film, &0 is Pippard coherence length [18].

The measurements were performed in a He3 fridge. Details of the ac resistance

measurement techniques have been described in Chapter 2. The frequency used here is 27
Hz. For the I-V curves, a HP34420A dc nanovoitmcter was used to measure the [-V
characteristic directly. The RF signal was supplied to the sample with two coaxial cables in

a separate tube and capacitively coupled to the current leads. (see Fig. 4.1.3(a)). All

electric lines were shielded by rt-filters with a cut-off frequency of 1 MHz. Due to the

resistance change of the sample at the superconducting transition, the actual rf power
injected into the sample is difficult to determine. Furthermore, some of the rf power may
be lost in the electrical lines and the capacitors. However, by interchanging the two current
leads we can check the experimental result is independent of the injection point. The

normal-superconducting phase boundary, T (B) was measured by tracing the sample at the

midpoint of the resistive transition while slowly ramping the magnetic field.

In order to remain consistent in our discussion of the data, we present the results on
the loop structure since it shows additional effects when a magnetic field is applied

perpendicular to the loop.

4.1.2 Resistance anomaly in R(T)
Fig. 4.1.4(a) shows the superconducting transition for the line segment between voltage

leads V| and V; of the Al Loop sample (see Fig. 4.1.3(a)) for various amplitudes of an
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Fig. 4.1.3 Schematic of the lead configuration for applying a rf signal (a) for
the Al Loop structure (b) for Al Line#1 structure and (c) for Al Line#2 structure.
(Adapied from C. Strunk at al. [6, 9] and B. Burk et al. [8]).
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Fig. 4.1.4 R(T) curves of the Al Loop sample measured with voltage probes
V/V3 (see Fig. 4.1.3) for an applied rf signal of different amplitudes and frequency

(a) 400 MHz (b) 50 MHz. (From Strunk, et al. Ref. [6]).
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applied rf signal of 400 MHz. With this choice of voltage leads, the part of the sample
measured does not contain the loop, but only a straight wire segment. Without any applied

rf signal, the curve shows the usual superconducting transition with T, ~ 1.294 K, where
T, is measured at the midpoint of the transition with no magnetic field applied. With a rf
signal applied, T , is first suppressed due to Joule heating or pair breaking. By increasing

the rf power, a clear resistance anomaly is induced in the trace for -48.8 dB and -50.7 dB,
similar to that observed by Santhanam et al. [1]. Fig. 4.1.4(b) shows similar data for a
frequency of 50 MHz. In this sample, one observes a peak appearing below the apparent
transition temperature, which evolves into the usual resistance anomaly at higher rf powers.

These effects do not depend on thermal cycling of the sample.

The fact that the resistance anomaly appears below T, but above the bottom of

transition indicates that it is associated with a nonequilibrium superconducting state. While
there is no apparent NS boundary in the sample, one can think of a PSC as a dynamic NS

boundary based on the model of charge imbalance near a PSC as discussed in Chapter 2.

An important property of charge imbalance is that the quasiparticle chemical potential uq

varies over a characteristic length AQ-, while the pair chemical potential up remains almost

constant (see Chapter 2). Therefore the voltage leads (which are superconducting) can
measure an excess voltage as compared to normal leads. Within this picture, one expects
the resistance anomaly to disappear as the separation between the two voltage probes is
increased [1-9]. To verify this, we measured over different voltage probes of the same
sample in order to check the spatial dependence of the excess voltage. Fig. 4.1.5 shows

the normalized R(T) curves using different combination of the voltage probes with a 400
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Fig. 4.1.5 Normalized R(T) curves for an applied rf signal of 400 MHz, -50

dB measured across different segments of the sample. A clear RA shows up across
segment V,/V3 only. Note that the depression of T, is the same for all segments
and the RA in segment V/V3 indeed rises below T.. For comparison, the solid
line shows R(T) for segment V3/V,4 without rf radiation. (From Strunk er al. Ref.

(6D.
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MHz, -50 dB signal applied. The resistance anomaly can be induced only in the short
segment between leads V, and V. Other segments, while they experience the rf signal (as

can be seen in the decrease of T ;), do not show any resistance peak. In contrast to
segment V /V,, the longer segment V,/V ,, which includes the segment V /V does not

show any resistance anomaly, which is in agreement with the charge imbalance model.

Although segment V,/V, has the same dimensions as that of segment V /V, the R(T)

curve corresponding to this segment does not show any resistance anomaly. This is
probably due to the monotonic decrease of rf power from the injecting lead along the

sample as mentioned in section 4.1.1, although T_ of this segment is clearly suppressed.
Alternatively, one can consider the segment V,/V to have a point of locally suppressed

superconductivity, which acts as a favored point for the nucleation of a PSC. The detailed

mechanism responsible for the different effects of rf radiation on T and resistance anomaly

is not clear. The data of Fig. 4.1.5 again confirms that the resistance anomaly is induced in

the superconducting state.

4.1.3 Resistance anomaly in V(I)
The excess voltage stemming from probing different chemical potentials in the same sample
as described in the previous section can be further investigated in the I-V curves of the

sample. By measuring the I-V curves of the same segment V ,/V 5 With a rf signal of the

same amplitude and frequency at various temperatures, a maximal excess voltage in the
curve is observed at a temperature (1.273 K) corresponding to the resistance maximum
observed in R(T) (see Fig. 4.1.5). This is shown in Fig. 4.1.6. This maximum excess

voltage decreases as the temperature moves away from 1.273 K. The inset of Fig. 4.1.6
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Fig. 4.1.6 (a) V(I) characteristic measured over V,/V; with a 400 MHz, -50 dB
rf signal applied. The inset of (a) compares the resistance obtained from ac
resistance measurement and the slope of the V(I) curves at zero dc current. (b) is
the same measurement without an applied rf signal at different temperatures. (From
C. Strunk et al. Ref. [6]).
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compares the previous R(T) curve with the data taken from the zero-current slopes of
several I-V curves measured at different temperatures. They show good agreement and
therefore confirm that the origin of the resistance anomaly observed in R(T) is from the
excess voltage in I-V curve. Fig. 4.1.6(b) is the I-V measurement at different temperatures

near 1.273 K without any rf signal applied. The data does not show any excess voltage.

4.1.4 Resistance anomaly induced by a magnetic field

The results of previous two sections strongly show the properties of charge imbalance.
Since there is no apparent NS interface in the sample, a PSC has been suggested to explain
the origin of the NS interface. Although the origin of the rf induced PSC is still not clear
[9], the model of PSC is commonly introduced to explain the broadening of the R(T) curve
of a 1D superconducting wire. A PSC is most likely induced at the spot of weakest
superconductivity [1, 5, 9, 27]. Instead of applying rf signals, an alternative way of
forming a PSC in our sample is to apply a magnetic field perpendicular to the loop. Near

the superconducting transition, due to fluxoid quantization, T oscillates as a function of the

flux threading the loop, the well known Little-Parks (LP) oscillations [104]. Therefore,

one can perform the previous measurement by tuning T, of the loop to suppress its order

parameter, and therefore create a PSC in one arm of the loop.

Replacing the film thickness t with the width of the wire, one can use a formula

derived by Tinkham [18] for the T _ suppression of a ID S wire exposed to a perpendicular

magnetic field B:
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n? d§,B

T.(B) = To[1-—5( )’] (4.1.2)

0

In the case of a loop, the Little-Parks oscillations are superimposed with the monotonic

background suppression of T_ given by Eq. 4.1.2 [105]:

éGL ran 2 2 NsznB [l2
T.B) =Ty{1-( R )? [( Y (1+z°)-2n 22

0 0

where R_=(R__ +R . )/2 is the average of the inner and outer radii of the loop, w =
m max min
R . R, is the width of the wire and z = w/2R _, the loop aspect ratio. The integer n has

max

to be chosen such that T (B) is maximized for a given value of B.

Fig. 4.1.7 shows the magnetic field dependence of the critical temperature of the

segment V ,/V, (termed loop segment) as well as that of segment V,/V (termed lead
segment). TC(B) corresponds to the point of the transition curve where R(T, B) = RN/2.

At low magnetic fields the LP oscillations are clearly seen in the loop segment, while only
small oscillations due to nonlocal effects [106] are seen in the lead segment. The solid line

in Fig. 4.1.7 represents the case of the classical LP effect for an isolated loop.

In Fig. 4.1.8 the R(T) curves for the loop segment were measured at half-integer

(a) and integer (b) values of the reduced flux (D/(Do, where <I)O=h/2e is the superconducting
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Fig. 4.1.7 Phase boundary T(B) for the loop segment (V|/V3) and the lead
segment (V/V3) for the Al Loop structure. Dashed and solid lines are fits
according to Eq. 4.1.2 and 4.1.3, respectively. (From C. Strunk et al. Ref.[9]).
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Fig. 4.1.8 R(T) curves of the loop sample measured with voltage leads (V,/V,)
corresponding to the resistance of the loop for the Al Loop structure at (a) half-

integer and (b) integer values of ®/®,. (From C. Strunk er al. Ref. [9]).
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flux quantum. At® = (n+l/2)<I>0, corresponding to a local minima of the order parameter

in one arm of the locp, large resistance anomalies appear for n>3. The resistance anomaly

increases with n and can become as high as 50% of the normal state resistance R forn=

6. In contrast, when ® = nCDO no anomalies are seen for n<4. At higher values of <D/<DO,

ie, ®=5 (DO and P =6 d)o, smaller resistance anomalies appear. For the lead segment,

no anomaly appears in the same field range (Fig. 4.1.9).

A correlation between the height of the resistance maximum R and the locally
suppressed transition temperature T _ in the loop is clearly shown in Fig. 4.1.8 and 4.1.9.

This correlation is clearly shown in Fig. 4.1.10 where the top and bottomn panels show the

normalized height of the resistance peak Rmax/RN -1 and the variation of ATc as a function

of <D/<DO, respectively. We can conclude that the resistance anomalies observed in Fig.

4.1.8(a) are indeed due to the suppression of T _ of the loop when a magnetic field is

applied.

4.2 Noise-induced resistance anomaly in a plain Al wire

Motivated by the results of the previous section, B. Burk ez al. [7, 8] found that the
resistance anomaly can also be induced by a ‘noise’ current of lower frequency applied to

the current leads of the sample. The idea is that unfiltered rf or 50-60 Hz noise can also
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result in a resistance anomaly, but due to a very different mechanism. As shown in Fig.

4.2.1, a noise current [ superimposed on the dc current during the measurement, if large

enough, can sample the nonlinear portion of the I-V curve of a superconductor, where the
slope of this curve dV/dI is much larger than the normal state resistance. Consequently, the

detected voltage V___ can be larger than the normal state voltage V at the same dc
ave norm

current, and an excess voltage results.

4.2.1 Sample properties and measurements
The SEM picture of the sample discussed in this section is shown in Fig. 4.1.1(c) and its

properties are summarized in Table 4.1. Since T _=1.324 K, above T=1.274 K the 1D

criterion §(T) >> w,t is satisfied. The samples were measured using standard four-terminal
ac measurement techniques as described in Chapter 2. In addition to the ac probe current Ip
applied, a sinusoidal ac 'noise' current [ was also imposed on the sample by injecting I
into the same current leads where Ip is applied during the measurement. In order to

minimize interference from external electromagnetic sources, each lead into the low

temperature cryostat was passed through a n-filter with a cutoff frequency of 10 MHz. The

sample was made by the author and the measurement was performed by B. Burk at

Northwestern University.

4.2.2 Resistance anomaly in R(T) induced by applying a noise current

We shall use the notation Rij " to denote the ac resistance measured when the ac current is

applied through contacts i and j, and the ac voltage measured across contacts k and 1. Fig.
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Fig. 4.2.1 Phenomenological picture of the mixing effect. (From Burk et al. [8]).
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4.2.2 shows R with various rms amplitudes of a 1 kHz 'noise’ current applied

18.45
through the current leads 1 and 8 shown in the sample schematic in the inset. Without any

noise current, no resistance anomaly is observed. As a noise current [ is applied, the
amplitude of the resistance anomaly clearly increases with [ - The peak is relatively sharp

for intermediate amplitudes of the noise current, but becomes broader as the noise current is
increased. These data are similar to Fig. 4.1.4, the resistance anomaly induced by an rf

signal.

4.2.3 Model of Mixing

In order to explain the result of Fig. 4.2.2, a numerical simulation based on the mixing
model described above is presented here. Following B. Burk et al. [8] we first numerically
expand the intrinsic current voltage characteristic V(I) without any noise signal obtained

from the superconductor in a Fourier series of the form:

N
2
V()= Y V_exp

N
M= =
2

12T m (TI— ” 4.1.4)

where I ) is the current range of the current voltage characteristic, N is the number of data

points in the curve, and V_ is the mth Fourier component of the voltage. I =1 dC+Ip(t)+

In(t) is the total current, where Ip(t)=Iposin(21tfpt) is the probe or measuring current with

frequency fp, and In(t)=Inosin(21tfnt) is the noise current with frequency fn. Using the
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applied through the current leads. (From B. Burk er al. Ref.[8]).

R5 45 as a function of temperature T for the sample schematic
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Bessel series expansion for exp(zsin(x)), we obtain the component Vp of the voltage

corresponding to the probe frequency fp

Ino
I ” (4.1.5)

[\]

i2rm 2nm

N
7 I
V.= Y (2i)V_exp Ip° ]J s [21tm

p

IC
ol

N
M=~ a—
2

where J {x) is the Bessel function of rth order. The calculated differential resistance is then

given by

RS

The input to above analysis is the intrinsic differential resistance curve measured

without an intentional superimposed noise current.

4.2.4 Resistance anomaly in dV/dI induced by applying a noise current
We now apply the calculation to our experimental data. Without any intentional noise

applied to the sample and with proper shielding of all electrical lines, a set of dV/dI(I i)
curves for the configuration Rl& 45 are first measured at various temperatures (Ip=lO nA
and fp=l 1.7 Hz). They are shown in Fig. 4.2.3(a). Their corresponding I-V curves are
obtained by numerically integrating the dV/dI(I dc) curves (4.2.3(b)). These curves show

the usual behavior of a S wire. No excess voltage is observed.
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T.. (b) Numerically integrated IV curves obtained from (a). (From B. Burk

et al. Ref.[8]).
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We first test our calculation on the I-V curve corresponding to T=1.30 K with a

noise current In=1 UA, fn=1 kHz applied to the same current leads where Ip and I 4 e

injected. The curve obtained from the procedure in section 4.3.3 is compared with the
measured curve and is shown in Fig. 4.2.4(a). The agreement is good. Both curves peak

atl, =0 nA where they exceed the normal state resistance R, become smaller than R at

I,. =500 nA, and finally reach Ry atlarger I .

In order to reconstruct the calculated R(T) curve, we calculated several dV/dI(I dc)

curves at different temperatures whose result is shown in Fig. 4.2.4(b). By plotting the

zero-dc current dV/dI as a function of the temperature we obtain the calculated R(T) curve

with a noise current | HA and 1 kHz applied. This result is compared with the measured

curve shown in Fig. 4.2.5, in which a R(T) curve without any intentional noise current

applied is also plotted. The calculated curve shows an excellent fit to the measured curve.

4.3 Comparison of the “rf’ and “noise” induced resistance
anomalies

The mixing effect discussed above raises the question of whether the rf induced resistive
anomaly is due to an intrinsic property related to charge imbalance in the sample or an
extrinsic effect due to a possible mixing of the measuring current with an external noise
signal. How can we distinguish between these two effects? Relying on our structural
characterization, we can exclude local variations of the cross section as a possible cause of

the resistance anomaly (see Fig. 4.1.2). No significant structural defects are found at
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curve for the configuration R;g 45 in the presence of a 1 kHz noise current of rms

amplitude | HA. The calculated curve is obtained from a measured dV/dI curve
with no noise current applied. (b) Calculated dV/dI curves with 1 kHz noise

current of rms amplitude 1 LA at various temperatures. For clarity, the curves are
successively offset by 1 2. Note the peak near zero bias at T = 1.30 K, which

gives rise to the resistance peak in R(T). (From B. Burk et al. Ref.[8]).
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Fig. 42.5 Comparison of the resistance R,g 45 as a function of T in the presence

of a 1 kHz noise current of rms amplitude 1 HA, with the corresponding calculated
value obtained by taking the differential resistance at zero bias from the calculated
dV/dI curves of Fig. 4.3.3(b). Also shown is the measured intrinsic Rg 45 as a
function of T with no noise current applied. (From B. Burk et al. Ref.[8]).
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different locations of the sample. The first difference between the rf induced RA and the
noise induced RA is in the I-V characteristic. The mixing effect can induce an enhancement

of the differential resistance above RN near zero bias current. However, in contrast to the rf

induced RA, dV/dI is expected to remain always positive for a simple mixing mechanism.
Therefore, it cannot explain the observation of negative dV/dI in some superconducting
samples [5, 9, 70]. The second difference between the two mechanisms is in the spatial
dependence of the resistance anomaly. Since the mixing effect is observed on a
mesoscopic wire the critical current is expected to be rather homogeneous. Therefore the
RA due to mixing should not be suppressed by increasing the spacing between two voltage
probes significantly. All these suggest an origin of the rf induced resistance anomaly in

favor of an intrinsic property related to charge imbalance in the sample.
4.4 Resistance anomaly observed in a 1D NS wire

In the last section, we described experiments on one system in which a resistance anomaly
can be observed. This was a pure superconducting wire, which can be either one
dimensional [1, 3, 4, 6-9] or two dimensional [2, 5, 27]. The common explanation of the
resistance anomaly in this system arises from the nucleation of a PSC in the sample and

consequently the existence of a charge imbalance region. An important property of the

charge imbalance is the coexistence of two chemical potentials, i.e., up and uq in the charge

imbalance region. uq decays over a characteristic length AQ- much longer than &(T) while

up remains almost constant in the entire charge imbalance region. A PSC can be created by

intentionally weakening the superconductivity at a local spot. This can be achieved by
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intentionally creating a defect in the sample geometry [27] or by applying an external

parameter such as a magnetic field [3, 9] or a rf signal [6, 9].

Another system for studying the resistance anomaly is in a NS system. In this
system the most common way to create a NS interface is to etch part of a 2D
superconducting stripe. The etched region becomes a weak superconductor whose

properties are usually revealed by a slight suppression of T, and I.. Consequently, a

charge imbalance region is created near the boundary between the superconductor (S) and

the weakened superconductor (W). By placing various N or S probes near the boundary,

one can detect the difference between up and uq. The spatial dependence of the charge

imbalance is implied in the gradual decrease of the resistance anomaly as the voltage probes
move away from the WS boundary (W denotes a weaker superconductor with respect to
S). An example is the experiment done by Park ez al. [S]. Since the resistance anomaly
observed in such a system stems from charge imbalance, one is easily lead to another
important phenomenon associated with charge imbalance, that is, the excess voltage as
discussed in section 4.2.2. This excess voltage can further be revealed in the negative
differential dV/dI which was shown in the experiment by Yu and Mercereau [70] and the
experiment by Park er al. [5] as discussed in Chapter 2. Although these experiments have
beautifully demonstrated the major properties of charge imbalance, they were done in 2D
systems. In addition, both metals are superconductors; for example, in the experiment of
Park et al., the temperature at which the differential resistance measurements were
performed was below the transition temperatures of both superconductors. As the
dimensions of the system are decreased, one may expect some usual results. To our

knowledge, there are not many experiments of charge imbalance done in a 1D NS wire.
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Hence, in this and the following sections we present results of our measurements on the

study of nonequilibrium effects in 1D NS structures.

We first present some data for a N-S cross structure as shown in Fig. 4.4.1. This
sample is made of an Au film as the normal metal and an Al film as the superconductor by

using two-step e-beam lithography as described in chapter 2. The film properties are as

follows: Au thickness ~ 26 nm, Al thickness ~ 36 nm, wire linewidth ~ 0.2 um, normal

metal Au coherence length éN(T)~ 0.6 um/T 2 superconducting coherence length
3 Af(T=0)=0.14 um, and T =1.268 K. Therefore, near T _, E () is much larger than

the wire linewidth, and the Al line satisfies the 1D criterion.

4.4.1 Resistance anomaly in R(T)
Fig. 4.4.2 shows the normalized resistance as a function of temperature measured for four

different measurement configurations. Only the combination of short superconductor (S,)

with either short (N]) or long (Nz) normal metal shows the resistance anomaly. This is
consistent with the spatial dependence of the quasiparticle chemical potential uq within the

picture of charge imbalance. As the temperature is cooled through T, acharge imbalance
is created in S, and S, near the NS interface respectively. This implies, for the
combination including the long superconductor (S,), the superconducting voltage probe is

placed at a distance larger than the charge imbalance length. In the experiment by Kwong

et al. [2], in which a weak superconducting region (W) was created in the middle of a 2D
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Fig. 4.4.1 Scanning electron micrograph of the 1D NS cross sample.
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Fig. 4.4.2 Normalized resistance as a function of temperature T for different
measurement configurations at zero magnetic field. The bracket behind each normal
state resistance Ry denotes the combination of two sections measured as shown in
the inset. Only the combination including a short superconductor shows a
resistance anomaly.
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superconducting stripe and various W and S voltage probes were placed at different
distances on the two sides of the W region. Although their geometry differs from our
sample in the dimension of the superconductor where the charge imbalance occurs, it may
be instructive to compare our experiment with their results. We found two major
differences. First, the charge imbalance length observed in our sample is shorter by a
factor of ~ 20. Second, the resistance anomaly observed in our sample is ~ 35% of the
normal-state resistance, which is larger than the result of Kwong et al. by a factor of 7.
The amplitude of the resistance anomaly observed in our sample is similar to the
observation of Santhanam et al. [1], in which the resistance anomaly was observed in a 1D

pure superconducting wire. However, in the experiment of Santhanam er al., the charge

imbalance length extends over a distance longer than 5 um. Note that the presence or

absence of the resistance anomaly does not depend on the length of the normal arm,

showing that the resistance anomaly is indeed related to effects in the superconductor.

4.4.2 Negative dV/dI(T)

We now examine the differential resistance dV/dI as a function of dc current I. Fig. 4.4.3
shows the dV/dI(I) curves at T=280 mK corresponding to the four measurement
configurations in the previous R(T) measurement (Fig. 4.4.2). A small peak visible at zero
current is similar to the reentrance effect observed in some proximity effect experiments
[12-17]. This effect is a consequence of the long range coherence of the electron-hole pair

correlation due to Andreev reflection at the NS interface [36]. A detailed study of this

reentrance effect is presented in Chapter S. At I ~ 10 pA, rich features containing peaks

and dips are observed. The general behavior is as follows: A small peak first develops,

followed by one or two dips and a sharp peak and a small broad bump is finally reached
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Differential resistance dV/dI as a function of dc current measured for
various measurement configurations shown in the inset of each plot. The curves
for the measurement configuration including a long superconductor clearly show a
negative dV/dI while the curves including a short superconductor show double
dips, one of which goes to negative resistance.
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before the normal state resistance. The detailed features depend on the measurement
configuration. This dependence can be generalized as follows: (i) Only one dip is observed
in the configuration which includes a long superconductor, while when the short
superconductor is measured, two dips are observed. (ii) In general, these peaks and dips
are symmetrical. (The asymmetry visible in Fig. 4.4.2 is associated with the sweep rate of
the current and is not an intrinsic effect.) (iii) A negative dV/dI is observed in each
measurement configuration, being more pronounced when the long superconductor is
measured. (iv) All these curves are reproducible upon sweeping the current in the opposite

direction.

As described in Section 4.1.2 another manifestation of the charge imbalance is an
excess voltage existing in the I-V curve. The negative dV/dl is a consequence of the excess
voltage [5, 9]. It was also observed in the experiment by Park et al. [S], who created a WS
boundary in the middle of a 2D Al stripe by etching part of the stripe. The W part has a
slightly lower T _ than the S part. The critical current I of the W part decreases along the W

part of the stripe as one moves away from the WS interface, while [, in the S part remains
almost constant, being equal to I _ of the W part at the WS boundary. Thus, a phase-slip

center is formed at the WS boundary. On the two sides of the WS boundary various etched
and unetched voltage probes were placed with equal spacing to detect the quasiparticle
potential and the pair potential. As a current is injected from the W part to the S part, a
nonequilibrium region exists due to the unequal distribution of quasiparticles on the two
branches of excitations. The inhomogeneity of the critical current in W region causes a
moving PSC along the W region as the current is increased. As a result, they observed a

sequence of negative dV/dI dips as the PSC moves in and out of each region between two
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voltage probes, the multiple negative peaks being due to the nonlocal interaction between
different PSCs. Within this picture, one is lead to the speculation that there exist two PSCs
in our measurement containing the short superconductor. However, there is no additional
voltage lead and therefore no apparent PSC exists adjacent to the voltage probes used in our

measurement .

Recently, C. Strunk ez al. [9] also reported negative dV/dI in a pure 1D S wire in
which a resistance anomaly was induced by rf radiation. The negative dV/dI was attributed
to the excess voltage due to charge imbalance near a rf radiation induced PSC. We would
like to point out that phase-slip centers are mostly likely induced in pure superconductors
(Chapter 2). The experiment of Park e al., although was performed on an WS system, the
explanation based on the PSC model is essentially applied to a pure superconductor

considering the fact that their measurement was performed at temperatures below T.. The

difference between Ref. 9 and Ref. 5 is that in Ref. 9, the PSC is fixed at some particular
spot while in Ref. 5, the PSC is moving in the superconductor. Our measurement, on the
other hand, is performed in a 1D NS system with one fixed “PSC” - the NS interface. The
additional negative dV/dI observed in the measurements containing the short
superconductor, therefore, leads us to the speculation of an additional PSC being nucleated
in the short superconductor. The absence of this additional PSC in the long
superconductor may be due to the detailed morphology of the sample, which allows the
nucleation of a PSC in the short section, perhaps in a region of suppressed

superconductivity.

4.4.3 Resistance anomaly in R(T) at finite magnetic fields

One of the properties in all reported measurements of resistance anomalies is that the



130

resistance anomaly is sensitive to a small magnetic field. The general behavior of the

resistance anomaly subjected to a small magnetic field is that T is first enhanced at a small

field of few gauss, indicating that the resistance anomaly occurs in the superconducting
state [6, 9]. As the field is further increased the resistance anomaly is suppressed and
disappears at a field of ~ 20-30 gauss due to the suppression of the charge imbalance length
[1-6, 9]. Based on the SBT model [66], C. Strunk ez al. [9] plotted the charge imbalance

length A g 32 function of magnetic field B (Fig. 4.4.4). Near Tco’ AQ- first decreases

from the zero-field value as a small field is applied, reaches a minimum at a field of 35

gauss for a temperature 5 mK lower than T , and eventually increases due to the depletion

of A as the field is further increased. We have observed this behavior in our 1D NS cross

sample.

Fig. 4.4.5 shows an example corresponding to the measurement configuration S ;-
N, in Fig. 4.4.2. A similar behavior was also observed in the S,-N, configuration. For a

magnetic field less than 10 gauss, the resistance anomaly is slightly increased. This
increase was also observed in the experiment of Kwong er al. [2] and the origin is still not
clear. At a field of 20 gauss, the resistance anomaly is completely suppressed and
increases again at higher magnetic fields. The negative magnetoresistance at the
temperature corresponding to maximum resistance in the resistance peak has been observed
by Santhanam et al. [1]. In their experiment, the magnetoresistance showed similar
behavior. However, their result did not show a reentrance of the resistance anomaly at

high magnetic fields (R(H) reached R at high magnetic fields). Our observation provides

a possible way of studying the resistance anomaly via the microscopic mechanism that
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B (mT)

Fig. 4.4.4 Charge relaxation length Aq- and charge relaxation time as a

function of magnetic field B at various temperatures below T.. AT =T, - T. (From
C. Strunk et al. Ref.[9]).
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leads to the relaxation of charge imbalance in 1D NS systems.

4.5 Charge imbalance in a 1D NS hybrid loop

Recent research on the proximity effect on mesoscopic systems [10-17, 40-44] has
motivated us to fabricate several mesoscopic NS hybrid loops which contain a normal-
metal arm and a superconducting arm. In one of these samples we also observed effects
similar to charge imbalance as is expected in any NS system. We present some of the data
regarding charge imbalance in this section. Fig. 5.1.1 shows a SEM picture of one of the
samples, as well as schematics of two of the loops. The sample properties are discussed in

Chapter 5. Chapter 5 concentrates on the low temperature (T<T .) and low bias (I<Ic)

behavior of the samples. Here we discuss measurements of these samples in the charge

imbalance region.

4.5.1 Negative dV/dI in the NS hybrid loop

Fig. 4.5.1(a) shows two traces of the differential resistance dV/dl as a function of dc
current at T = 30 mK for sample B of Fig. 5.1.1. The measurement configuration is
shown in the inset. The measurement technique is the same as that described in Chapter 2.
A slight difference here is that we impose two ac signals of different frequencies on the dc
current so that by lock-in detecting these two signals at different reference frequencies, we
can measure simultaneously dV/dI’s corresponding to the two configurations shown in the
plot. At zero current, the top curve in Fig. 4.5.1(a) shows an enhancement of dV/dI due to
the reentrance effect [12-17], which will be discussed in Chapter 5. This enhancement,

which is also observed in the bottom curve of Fig. 4.5.1(a), is not clearly seen in the curve
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5.1.1 (b) shows an expanded region of the data in (a).
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because of the large scale of the plot. At a current near 10 pLA, the top curve clearly shows

a negative dV/dI dip. Following this dip, two dips close to each other are observed again

between 10.8 and 11 pA. Fig. 4.5.1(b) shows the enlarged plot of the two curves between

9.6 and 11.2 pA. One should note the difference between the two measurement

configurations is that top curve represents a less conventional dV/dI of the segment
between point A and B since the dc and ac current do not follow the same path while the
bottom curve represents dV/dI of the segment between A and C. The general behavior of
the two traces of dV/dI curves are: (i) The amplitudes and positions of these peaks and dips
change upon thermal cycling. This may be due to the property of the NS interface. (ii)
One difference between the first peak (dip) and the group of second and third peaks (dips)
is that the first peak (dip) is much more stable than the second and third peaks (dips). In
our experience, upon carrying out many measurements, the two traces show a sudden
transition to normal state resistance between the first and second peaks (dips), indicating
the second and third peaks are in a metastable state and are sensitive to external factors such
as temperature or magnetic field. This behavior is shown in Fig. 4.5.2(a). The two dV/dI
curves correspond to the same measurement configuration for the bottom curve in Fig.
4.5.1(a) (but sweeping dc current in the opposite direction). While using the same

measuring techniques, the dotted curve of Fig. 4.5.2(a) has a sudden transition to a low

dV/dI value between -10 and -11.2 pA instead of developing two sharp peaks as in the

solid curve. We will return to discuss this metastability in detail later. (iii) Both the
positions and amplitudes of the peaks and dips are sensitive to a small magnetic field, being
periodic as a function of the flux threading the hybrid loop with a period equal to a flux

quantum corresponding to the area of the loop. (iv) Both the positions and amplitudes of
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the peaks and dips are strongly temperature dependent, showing behavior similar to the

temperature dependence of either the superconducting energy gap A(T). Fig. 4.5.2(b)

shows the position and the amplitude of the third dip as a function of temperature for the
top curve of Fig. 4.5.1(a). Both the position and the absolute value of the amplitude show
a slight decrease as the temperature is increased from the lowest temperature and decrease

rapidly at temperatures close to T, (1.15K).

4.5.2 Coherence effect in the NS hybrid loop

Although our interpretation of the negative dV/dI is somewhat hindered by the normal arm
in the hybrid loop, the existence of this normal arm, on the other hand, provides
information for examining the phase sensitivity of the negative differential resistance.
When two NS interfaces are involved in the sample, an additional effect resulting from the
phase of the superconductor becomes apparent. This can be observed by applying a
magnetic field to modulate the phase difference between the two NS interfaces. Fig.
4.5.3(a) shows the plot for the amplitude and the position of the third negative dV/dI dip of
Fig. 4.5.1 as a function of magnetic field H at T=30 mK. Both curves show clear periodic
oscillations as a function of the magnetic field. The period of oscillations is equal to one
flux quantum corresponding to the area of the NS hybrid loop. Similar results are
observed in other samples. Fig. 4.5.3(b) shows dV/dI for sample A of Fig. 5.1.1, along
with the oscillations of the amplitude of one of the resistive peaks. This result implies an
interesting effect: If the negative dV/dI observed in our sample is due to an excess voltage
in the charge imbalance region, these oscillations then suggest that at least part of this
excess voltage is phase coherent, which in turns suggest that part of the pair chemical

potential is phase sensitive. To our knowledge, this property has not been observed in the
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charge imbalance regime.

4.5.3 Metastability of the differential resistance

We finally present data showing the metastability of the peaks and dips in the differential
resistance. The negative differential resistance we observed, if it due to the charge
imbalance, suggests the existence of PSCs in our sample. As described in the previous
section, PSCs can be thermally activated at high temperatures. Furthermore, the second
and third peaks (dips) show unstable behavior (see Fig. 4.5.2(a)). The rather strong
temperature dependence of these negative dV/dI’s (both amplitude and position) and the
metastablility of the second and third negative dips motivated us to investigate the dV/dI

metastability at different temperatures.

Fig. 4.5.4 shows five traces of the amplitude of the second dV/dI dip as a function

of time at various temperatures. The traces of Fig. 4.5.4 were measured by biasing the dc

current at the second dip of Fig. 4.5.1. For clarity, each curve is shifted up by S Q. The

resistance of the dip switches between two values. As one can see, at low temperatures,
only few switching events take place. As the temperature is raised, more switching events
are observed in the same period of time. Above 700 mK (the data are not shown here), the
switching is so frequent that we could not bias at the dip any more. Each switching event
seems to occur between two metastable states based on the fact that the amplitude of the
switching is temperature independent. This suggests that there may exist an energy barrier
similar to the condensate energy in the case of phase-slip event [18] for a switching event to
occur. At present, the origin of this bistability is still not clear due to the difficulty in

analyzing the complicated geometry of the sample.
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In summary, we have successfully created a PSC in 1D Al samples with external
parameters, a rf signal and a magnetic field, to induce a resistance anomaly in the sample.
In the former, the location of the PSC is not well controlled by the rf signal while in the
latter, the location of PSC is clearly determined by the local suppression of the order

parameter (T ) in the sample via the aid of a magnetic field. We have also shown that the

resistance anomaly can arise from the simple mixing of the measuring current and a “noise”
signal, raising the possibility of an external origin of the resistance anomaly. The detailed
comparison between the rf and noise induced resistance anomaly suggests that the rf
induced resistance anomaly is due to an intrinsic property of a nonequilibrium
superconductor. The microscopic mechanism responsible for the rf induced resistance

anomaly needs to be investigated further.

In our investigations of charge imbalance in 1D NS systems, we have observed
several interesting results including: a relatively short charge imbalance length in 2 1D
superconductor compared with previous results, multiple negative dV/dI dips in the system
where only one pair of voltage probes exist, a reentrance of the resistance anomaly at high
magnetic field, metastable negative dips in a NS system containing two NS interfaces,
phase-sensitivity of the metastable negative dips, and two level switching behavior of the

metastable negative dips.



Chapter 5

Anomalous Proximity Effect

In the last chapter, we discussed nonequilibrium superconductivity in pure superconductors
and in superconducting wires near a NS boundary. In this chapter we turn to the
normal-metal side of a NS boundary. The relevant physics is the so-called proximity effect
[18, 33, 34], in which superconductivity can penetrate into the normal metal by inducing
pair correlations across the NS boundary. The unique behavior of the proximity effect
presented here is that the conductance enhancement is suppressed at temperatures far below

T,, which is in contrast to the conventional understanding of the proximity effect, in which

the conductance enhancement increases monotonically as the temperature is lowered.

Conventionally, the proximity effect was observed in a normal metal layer of few
thousand angstroms sandwiched between two superconductors [29-32]. Behavior such as
a finite supercurrent across the sandwich and zero resistance have been observed in such
SNS structures, confirming the existence of superconductivity induced in the normal metal.
It is generally accepted that the microscopic mechanism responsible for the proximity effect
is Andreev reflection [36]. Recently, the effect has been observed in 1D normal metal
wires which are several microns long. A finite supercurrent can still be sustained in such a
long 1D N wire {12-14, 40]. A striking result was observed which showed the resistance
of the normal metal increases at very low temperatures, the so-called reentrance effect [12-

17].

These strange results have motivated the study of the proximity effect at
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temperatures far below T.. That the resistance of a diffusive normal metal adjacent to one

or more superconductors regains its normal state resistance at zero electron energy and
temperature, the so-called reentrance effect, was first predicted by S. N. Artemenko, A. F.
Volkov, and A. V. Zaitsev [46]. Based on the impurity-averaged quasiclassical Green
functions technique [46-53], theoretical analysis shows that electrical transport in a normal

metal connected to a superconductor can be described by an effective diffusion coefficient

D(g, r), which is energy and position dependent [50, 52-53]. This is one manifestation of

the change in electron states of the normal metal induced by proximity to a superconductor.
The surprising feature of the prediction is that the conductance enhancement nominally
vanishes at zero temperature and zero energy despite the presence of superconducting

correlations.

We present here the results of the measurement on the transport properties of two
mesoscopic hybrid loops composed of a normal-metal arm and a superconducting arm.
The samples differed in the transmittance of the normal/superconducting interfaces. While
the low transmittance sample showed monotonic behavior in the low temperature
resistance, magnetoresistance and differential resistance, the high transmittance sample
showed so-called reentrant behavior in all three measurements. A simulation based on
quasiclassical Green functions theory is performed to compare with the experimental

results.

5.1 Reentrance Effect

Consider the case of a normal-metal wire of length L, connected to a normal reservoir at
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one end and a superconducting reservoir at the other. Based on the theory of quasiclassical

Green functions, under the limit kBT, eV << A, the Thouless energy Ec=hD/L2 becomes

the characteristic energy of the system, where D is the electron diffusion coefficient. The
manifestation of the reentrance effect in experimental measurements of transport
phenomena includes : (1) The zero-bias resistance of the normal metal as a function of

temperature decreases from its normal state resistance Ry at T=0as T is increased, reaches
a minimum at kT ~ E, and returns to R, at a higher temperature. (2) The zero-

temperature resistance of the normal metal as a function of the voltage V biased between the

normal and superconducting reservoirs shows the same behavior as (1) except kT is

replaced by eV. (3) The amplitude of both zero-bias magnetoresistance oscillations and the
zero-temperature magnetoresistance oscillations of an Andreev interferometer shows an

increase from zero at T=0 and V=0 respectively, reaches its maximum at kgT,eV ~E,

and vanishes at higher T and V respectively.

5.1.1 Sample properties and measurement setup

We have observed the reentrance effect in hybrid loops containing a N arm and a S arm
(NS loop) as well as a structure composes of a LD N wire connected to a 1D S wire (NS
wire). Here we present primarily the results of experiments on two NS loops (sample A
and sample B). The primary difference between the two samples is in the NS interfaces.
Sample B contains interfaces of much higher transmittance than sample A. An electron
beam micrograph of the sample studied (sample A) is shown in Fig. 5.1.1(a), and

schematics of the two samples are shown in Fig. 5.1.1(b). The samples were fabricated by
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(b)

Sampie A Sample B
\

Fig. 5.1.1  (a) Scanning electron micrograph of sample A. The additional gate
electrode was kept grounded and not used in these measurements. (b) Sample

schematics for the two samples. The dimensions are indicated in pm. The leads

used to apply ac currents and measure the voltages are also shown in the
schematics. For the dV/dI measurements, an additional dc current is applied
through I+/-.
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conventional multilevel electron-beam lithography described in detail in Chapter 3.
Controlled Ag and Al wires were coevaporated with sample B in order to calibrate film

properties. The relevant film parameters are as follows: Au/Ag thickness ~ 28 nm, Al

thickness ~ 37 nm, wire linewidth ~ 0.1 - 0.14 pm, normal metal (Ag) coherence length

§N(T)~ 0.23 pm/T"?, superconducting coherence length & 4(T=0)=0.31 um, and electron
phase coherence length L(p=0.9 pwm at T=30 mK [107]. The measurements were

performed in a dilution fridge between 30 mK and 1.5 K using a four-terminal ac resistance
bridge, with ac excitations in the range of 10-100 nA to prevent heating (see Chapter 3).
The four terminal measurement configuration is shown in Fig 5.1.1(b). For the dV/dI
measurements, the dc current was applied through the same leads as the ac current before
the total current was sent into the resistance bridge circuit. An EG&G PAR 124A lock-in
amplifier was used to detect the ac response (see Chapter 3 for details). The highest

frequency used was 103 Hz and no difference was observed for different frequencies.

5.1.2 Reentrance effect in R(T)

Fig. 5.1.2 shows the normalized resistance (R/Ry) as a function of temperature T for the

two samples. Sample A has a small drop in R, followed by a gradual decrease down to 30

mK. Sample B, in contrast, has a sharp decrease at Tc, reaches a minimum at T ~ 520 mK,

and eventually increases as the temperature is lowered still further. The sharp drop in

resistance of sample B near T results from the fact that its NS interfaces are highly

transparent and therefore the superconducting arm shorts out the normal arm of the loop.

Sample A, on the other hand, possesses lower NS interface transparencies and therefore
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Fig. 5.1.2 The normalized resistance R/Ry as a function of temperature T.
Ry =67.5Q and 10.3 Q for samples A and B respectively.
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only shows a small decrease near Tc. The resistance at the lowest temperature is 5.95 Q.

Using the resistivity of the coevaporated Ag wire we obtain the resistance of the side

branches to be ~ 7 Q at 4.2 K, close to 5.95 Q. Therefore, the resistance almost reaches its

normal state value.

Before introducing a detailed numerical calculation based on the theory predicted in
Chapter 2, we can make some rough qualitative comparisons to the experiment. We

rewrite Eq. 2.4.18 in the form,

R
sin(0 ¢, — 8y, - R—:axe(x,e) (5.1.1)

where eso and GNO denote the value of 8 at the superconducting and normal sides of the

NS interface (x=0) respectively. If we assume €<<A, and that the superconducting

reservoir is not affected by the normal wire significantly, then GSO=GS=1t/2 according to
Eq. 2.4.19(b), where es is the value of 6 far inside the superconducting reservoir. For the
very high transmittance case, Rb/RN ~ 0, and 6N0=OSO=11:/2. 6 in the normal metal has its
maximum value at the NS boundary. In contrast, if Rb/RN > 1, then the argument of sin®

reaches its limiting value and 9N0=950-1t/2=0. Therefore 6 becomes zero at the NS

boundary. Consequently, the proximity effect in the normal metal is minimized. This is
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consistent with what we observe in our samples. The resistance of each NS interface is ~
25 Q for sample A and < 0.5 2 for sample B. Consequently, Rb/RN > | for sample A and
R, /Ry << 1 for sample B. Hence, one expects the proximity effect to be smaller in sample

A, which is consistent with the data shown in Fig. 5.2.2.

We can roughly estimate the temperature T, at which the maximum proximity
effect occurs in sample B. Since 6 decays over a characteristic length ~ (vD/)'’? and the

reentrance shows up when the normal-metal coherence length &N is comparable to the

o : . 2
length of the sample L, on substituting € with kBT, one obtains Tmin~’nD/kBL.

Furthermore, the longer N side branch dominates the reentrant behavior since it contributes
the larger resistance. Inserting the length of longer side branch for L, one obtains

T ;,~176 mK, which is a factor of 3 lower than the temperature at which we observed the

minimum in resistance in Sample B.

In order to compare this result with the theory in detail, we now apply the

quasiclassical Green functions theory to simulate our sample geometry. The parameterized

Usadel equation described in Chapter 2 is further simplified if the gap A in the normal metal

is assumed to be zero, and inelastic scattering mechanisms are neglected:

2’0, x) . .
T-&-Zlesme(e, x)=0 (5.1.2)
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This equation is solved with the boundary conditions provided in Chapter 2, i.e., 8(¢, x) =

O in the N reservoir. In the S reservoir,

T 1 A+e
0(g, X)==—+i=In for € <A, (2.4.190b)
2 2 A-e
1. e+A
B(e, x)=1=1In for & >A. (2.4.19b)
2 g-A

Since the voltage leads are one dimensional with respect to the coherence length (w << f;N),

the boundary condition at a node where two normal wires intersect is determined by a

Kirchoff-like equation resulted from the conservation of spectral current [52]:

de, (e, x)
S.—(——— =0

— (5.1.3)

where Si is the cross section of the ith wire.

To solve the transport problem, we need to solve the equation of motion for the
Keldysh Green function G* (see Eq. 2.4.7(a) of Chapter 2). Here we follow the
procedures elaborated in Refs. 48, 50, 52 and use the simple geometry of a N reservoir

connected to a S reservoir by a normal wire of length L. In the absence of supercurrent and

pair potential, f, and f, are decoupled and we obtain a simplified equation for an effective
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diffusion coefficient D(g, x):

df,(x, €, V,
d f5 o &, T7]:0 (5.1.4)

dx Ex dx

where we have written f3 explicitly in terms of position x, electron energy &, bias voltage V

and temperature T. D(g,x) has the following form [48]:

D(e, x) = D cosh’[ImO(e, x)] (5.1.5)

with D=v /3, the normal state diffusion coefficient. Assuming the normal reservoir N is

biased at a voltage V and the superconducting reservoir is biased at zero voltage. Eq. 5.1.4

is then solved with the boundary conditions for the even distribution function f; (see Sec.

2.4.2):
f; =0 in the S reservoir (2.4.15a)
f l(tanh——gﬂ:V tanh——-e—ev) in the N i (2.4.15b)
= - - in the N reservoir 4.
= 7 (BT 2Kk, T

The solution for f;(x) is straightforward:
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p -2
v L erev ceV o c—eV fcosh [ImO(e, x)]dx
f}(xoev vT) 2( 2kT ZkT)L

J'cosh [ImO(e, x)]dx

(5.1.6)

The current flowing out of the N reservoir is proportional to f3 (L, &, V, T) [50].

Summing the contribution from all electron energies we finally obtain a formula for the total
current I(V,T) flowing out of the normal reservoir biased at a voltage V relative to the

superconducting reservoir at temperature T [48, 52, 53]:

l E+e £—-¢
IV, T) = Ids [tanh( 7 ) — tanh( 57 )1DX(E)
2Ry (5.1.7)

where

1
L (5.1.8)

(1/L) [ dx sech’ [Im8(g, x)]
0

D(e) =

The first term of Eq.5.1.7 takes into account thermal smearing at finite temperature while

the second term describes the correction from the proximity effect.

We now apply these equations to the geometry of Sample B. Fig. 5.1.3(a) shows a
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schematic of Sample B. We assume that the NS interfaces are perfect, so that the loop
resistance is zero, being shorted by the superconducting arm. The measured normal-metal

resistance R is then simply the sum of the two N side branches, Rl and R?_ with length LI
and L,, where L, is the length of the arm from the superconductor to the point at which the

voltage probe joins the wire. To determine the proximity effect resistance, we need to
solve the Usadel equation in the 1D wires on either side of the loop. We make the

following assumptions in the simulation: (i) Since the electron phase coherence length Lq,

places an upper cutoff to the pair correlation in the normal metal, we take the normal

reservoirs to be at a distance L(p from the superconductor. (ii) The upper limit of the
integral in Eq. 5.2.8 is Li (i=1, 2), but not L(p due to the following reason. Since the

voltage leads are not placed at the N reservoir, the electrochemical potential measured is not
equal to the voltage drop between the N and S reservoir. Fortunately, the variation of the
potential with the position was shown not to deviate far from a linear form [50]. Therefore
we can relate the voltages measured at each probe by a linear scaling of the form

Vi=V(Li/L¢), where V is the corresponding normal reservoir, and the voltage at the

superconducting loop is zero. (iii) We do not take into account the interference of the
voltage probes on the boundary condition of Eq. 5.1.3. Taking the effect of the voltage

leads into account provides only a minor correction to the results.

Figure 5.1.3(b) shows the final simplified NSN geometry that we simulated. The

total temperature dependent resistance of the sample is the sum of the resistances R,(T) and
R,(T). To determine the temperature dependent resistance of each N side branch, we can

take the derivative of I(V,T) with respect to voltage V and obtain G(V, T)=dI/dV. The
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Fig. 5.1.3 (a) Schematic of the simulated model. The total current is assumed to
flow into the superconducting part of the hybrid loop, so the simplified model is
equivalent to a N-S-N geometry (b).
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resistance is then obtained from: R(V, T) = G*}(V.T). At zero bias, the calculation is

simplified. To first order in V, the following formula is obtained.

- d 1 )
R(T) =R, [ [ c ! (5.1.9)

0 2k, T coshzrgBT

L
< [ cosh 2 [Im6(g, x)]dx
0

Figure 5.1.4(a) shows Rl(T), RZ(T), and the sum RI(T) + R2(T) calculated in the
limit A>>Ec in the temperature regime below 1 K. As expected R, dominates the

contribution to the reentrance effect. Rz’ on the other hand, decreases as temperature is

raised from zero but never reaches the minimum within the whole temperature range. Its

contribution to R is to lower the total minimal resistance and to slow down the tendency of

returning to the total normal state resistance RN To calculate 6(g, x) we have assumed A is

much larger than all the energies integrated in Eq. 5.1.9. For the temperature range of

interest, it is good enough to integrate up to 100 Ec. We now examine how the value of A

effects the calculation. Fig. 5.1.4(b) shows the result of the calculation for the total

resistance using two different values of A. In the case of A >> 100 EC the curve recovers

its normal state value faster than the curve obtained from the case where A is close to 100
E at high temperature. On the other hand, at temperatures less than 5 E , where the theory
[ 4

is usually applied, the results do not show any significant difference. Therefore, we
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Fig. 5.1.4 Simulation of the resistance as a function of temperature based on
model in Fig. 5.3.1. (a) Resistance as a function of temperature for R;, R, and

R=R;+R;. Assume A >>E_. (b) Total resistance R as a function of T for different
A’s. A=200E 10000 E; for solid curve and dashed curve respectively.
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assume A=IO“Ec in the calculation since this retains the behavior at low temperature while

giving a result closer to the measurement at high temperatures.

Comparing the result in Fig. 5.1.4(a) with R(T)/R in Fig. 5.1.2, one finds a large
discrepancy at temperatures close to T . To resolve this problem, we note the total

resistance measured in R(T) contains the contribution from the S part of the hybrid loop as

well. At temperatures close to T , this contribution becomes important due to the broad

superconducting transition of the sample. In pure superconducting samples, one
mechanism that leads to finite resistance just below the superconducting transition is
thermal activation of phase-slip centers. Phase-slip events are well known to be
responsible for the transition in R(T) from the normal to the superconducting state. The
resistance broadening due to these phase-slip centers is given by the Langer-Ambegaokar

(LA) equation [18]:

T

<

32
R = %exp[ﬁ[l - X ] /T} (5.1.10)

where o is a parameter associated with the attempt frequency for a phase slip event, and B

is a parameter related to the energy barrier for a phase slip event. For pure superconducting

wires, B is typically very large (~10), which confines the broadening of the transition to a
few millikelvin near Tc. For our N-S structures, B is expected to be much smaller, since

the transition is much broader.
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Fig. 5.1.5 shows the comparison of the experimental result with a combined theory

of quasiclassical Green functions and the LA formula. Eq. 5.1.10 was fitted to the

difference between data and the R(T) curve in Fig. 5.1.4(a) using o and B as fitting

parameters. For this fit, ®=0.17 QK and $=9.3 K. One can see the phase-slip events
(dashed curve) dominate at temperatures close to T, and vanish quickly at temperatures of
the order of E . In contrast, the reentrance effect based on the Usadel Eq. (dotred curve)

dominates at very low temperature. The solid line shows an excellent fit to data combining

both the Usadel equation and the LA formula.

Even with this analysis, however, it is not clear that the drop in resistance near T, is

due to phase phase-slip centers in the superconductor, especially since this does not
account for the bias dependence of the differential resistance discussed in the next section.
It is clear, however, that the resistance drop is not associated with the proximity effect in

the normal metal which is dominant at lower temperatures.

5.1.3 Reentrance effect in dV/dI(V)

The difference in the interface transmittances of the two samples also causes different
behavior for sample A and B in the measurement of the differential resistance as a function
of voltage. This can be seen in Fig. 5.1.6, which shows dV/dI as a function of V at T=30
mK for the two samples. At low voltages, the curve for sample B clearly shows a
reentrance effect which resembles the reentrance effect in the temperature dependent

resistance R(T). Sample A shows a monotonic decrease in dV/dI as the voltage is

decreased from 40 uV. This decrease turns into an increase when a low magnetic field of
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Fig. 5.1.5 Comparison of the experimental data with the theoretical simulation.

(2) shows the fit to R(T) combining the Usadel equation with the formula o exp[ B
(1-T/T)32/TY/T based on the LA theory, & = 0.1765 QK, $ =9.9284 K, T, = 1.2
K. The dotted curve (Usadel Eq.) is shifted down by 0.04 and the dashed curve
(LA) is shifted up by 0.45 for clarity.
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Fig. 5.1.6 Normalized dV/dI as a function of dc voltage V at T = 30 mK for
sample A and B. The voltage is obtained by integrating dV/dI vs. [4.. ac and dc

currents are applied through I+/- shown in Fig. 5.1.1(b). (dV/dI)y is 67.5 Q and

10.3 Q for samples A and B respectively. Also shown is the dV/dI curve measured
at H=225 Gauss for sample A.
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225 gauss is applied to the sample. However, this peak is not due to reentrance as can be
seen by close examination of R(T) in a magnetic field. Fig. 5.1.7 shows R(T) for sample
A measured at different values of magnetic field corresponding to different values of the

flux threading the hybrid loop. Although there are differences between integral and half-

integral values of the flux quanta ¢O=h/2e, the data clearly show no reentrance effect

whatsoever. We believe that the peak in dV/dI at zero bias is similar to the zero bias
anomaly observed by Kastalsky et al. [72], which was explained by van Wees ez al. [108]

as arising from suppression of coherent multiple Andreev reflections by a magnetic field.

We now focus on the reentrance effect observed in sample B. The minimum

resistance occurs at ~ 7.25 pV. Using the same estimate of the Thouless energy Ec used in

evaluating the minimum in R(T), T . ,we obtain V__ ~ E /e = IS5 uV, where V__
min min C min

denotes the voltage at which the minimal differential resistance occurs. This is in

disagreement with the result shown in the case of R(T), where the calculated T __. is lower

than the observed value by a factor of 3. We shall come back to this problem after we

obtain the simulation of dV/dI (V) based on the theory of quasiclassical Green functions.

To calculate dV/dI(V), one notes the temperature kernel in the integrand of Eq.

5.1.9 becomes a step function at T = 0 with the discontinuity centered at € = €V, i.e., the
contribution to the total current [ comes only from lel < eV [48]. The conductance dI/dV

thus contains a 8-function centered at lel = eV. This results in a simple formula at T=0

similar to that given in Ref.[48].



162

[ £ 4

06
12¢,
Lo

320,

64—
Sample A
62f
S o
a 60— 123 4 A
(a4 o 2
Fay
581
* o
-
o 2 “
L J ) SN
561 A
0.1
T(K)

Fig. 5.1.7 Resistance of Sample A as a function of temperature with a magnetic
field applied perpendicular to the loop corresponding to different multiples of the

flux quantum h/2e through the loop.
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L
R(V)=R{ % gsechz[lme(e,x)] dx} (5.1.11)

e=eV

However, the calculations of RI(V) and R?_(V) cannot be separated since V is the sum of
V, and V, measured for each branch subject to the same current I. The procedure we adopt
is as follows. RI(V[) and Rz(vz) are calculated first based on Eq. 5.1.11, where Vl and
V2 are the bias for the long and short branches respectively. RI(V) and Rz(V) are then

calculated self-consistently using the following equations.

V +V,=V (5.1.12a)

v, v,
R,(V,) R,(V,)

(5.1.12b)

Fig. 5.1.8 shows the experimental data and the calculated curve based on quasiclassical

Green functions theory. The theoretical calculation gives a Vmin at ~20 pV. This is partly

due to the effect coming from the short N branch similar to the case of R(T). Within this
voltage range the resistance of the short branch decreases monotonically from V=0 and

never reaches its V . . Therefore its contribution flattens the curvature of the curve

obtained from the long branch. Quite clearly, the experiment and the theory do not agree
with each other. Using the same arguments as for R(T), one may think of adding the
contribution due to current induced phase-slip centers. However, this contribution depends
exponentially on the dc current, and gives a resistance much larger than the observed

differential resistance if we use the same parameters as were used for R(T).
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Fig. 5.1.8 Comparison of the theoretical calculation (solid curve) based on the

Usadel Eq. with dV/dI(V).
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5.1.4 Reentrance effect in R(H)
We finally present the data for the magnetoresistance measured at various temperatures for

both samples. Figure 5.1.9(a) shows the magnetoresistance of sample A at a few

temperatures below 1 K. Oscillations of a period corresponding to a flux h/2e through the

loop are observed which persist up to the critical temperature T, of the superconductor, and

whose amplitude at the lowest temperatures is much larger than e?/h (in terms of
conductance). Two properties coming from proximity effect are addressed here. First, the
large amplitude of these oscillations (>>e*/h) rules out the possibility of their being due to a

normal metal quantum interference effect such as weak localization or conductance
fluctuations. Second, the oscillations still have significant amplitudes at temperatures close

to T, and disappear at temperatures above T.

Figure 5.1.9(c) shows the amplitude of the magnetoresistance oscillations for the
two samples as a function of temperature. The amplitude is determined by calculating the
power in the Fourier transform in the inverse field range corresponding to the area of the
loop, +/-25 mT for sample A and +/- 20 mT for sample B. While the oscillation amplitude
in sample A shows a monotonic increase as the temperature is decreased, the amplitude of
the oscillations for sample B displays a reentrant behavior with a maximum at a temperature
of ~200 mK. Since the oscillations arise from interference effects around the loop, one

might expect that the amplitude of the oscillations would be determined by the ratio of

normal metal coherence length E,N(T) to half the length L of the normal arm, which is ~1.1

um. AtT ~ 170 mK, 2§N(T) = L. This is in good agreement with the temperature at which

we observe the amplitude maximum. For sample A, no such maximum is observed, even
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Fig. 5.1.9 (a) , (b) are the magnetoresistance curves R(H) for sample A and B
respectively. The small offset of H in (a) is due to the residual flux trapped in the
magnet. In (a) the curves for T = 101 mK, 203 mK, 400 mK and 1.07 K are

shifted up by 4 Q, 8 Q, 12 Q, and 16 Q respectively. In (b) the curves for T =
7 mK, 199 mK, 491 mK and 600 mK are shifted up by 0.2 Q, 0.4 Q, 0.7 Q and

0.8 Q respectively. (c) Normalized amplitude of the Fourier transform of (a) and
(b) as a function of temperature. The field range is +/- 25 mT and +/- 20 mT

and the normalization amplitude is 0.982 Q and 0.019 Q for samples A and B
respectively. The solid lines represent fits to the form a exp(-b T1/2) at higher
temperatures, with a = 3.1, 2.7 and b = 3.4 K-/2, 2.2 K-1/2 for samples A and B
respectively. For comparison, we also show a best fit to a power law of the form
a/T as used by Courtois et al. [12], with the values a=0.128 K, 0.238 K for
samples A and B respectively.
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though the film parameters for the two samples are similar. This again is a consequence of
the low NS interface transparencies in this sample. At higher temperatures, both samples

show a temperature dependence which is well described by a function of the form a exp[-b
T”z], as can be seen in Fig. 5.1.9(c). This is in contrast to the results of Courtois et al.

[12], where the magnetoresistance oscillations were seen to decay as a power law in
temperature. For comparison, we also show the power law dependence found in Ref. 12,
which does not describe the data well. This difference may arise from the difference in the

specific geometry of the samples in the two experiments.

The oscillations of the magnetoresistance in our samples are obviously related to the
presence of the hybrid loop. In a simple picture, the hybrid loop provides periodic
oscillating boundary conditions for the correlations induced in both N side branches when a
magnetic field is applied. The boundary conditions, of course, are governed by the normal
arm of the hybrid loop since one would never expect any oscillation in a structure similar to
a NSN geometry if the hybrid loop is broken by disconnecting its normal arm. Therefore,
the properties of these magnetoresistance oscillations are not only due to the interface
resistances but also the length L of the normal arm in the loop. Due the complexity of the
geometry, we have not attempted to solve the quasiclassical Green functions equations in
the presence of a magnetic field. However, a qualitative understanding can be made by
comparing with other quantum mechanical interference phenomena such as weak
localization [109] in a pure normal-meta! loop structure, where the amplitude of the

magnetoresistance oscillations decays exponentially over the phase breaking length L(p ,

AR/RN ~ exp(-UL(p), L being the perimeter of the loop. In the normal arm of our hybrid
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loop, the oscillating amplitude is determined by the normal metal coherence length &N.

Consequently, one expects the oscillating amplitudes outside the loop are also determined

by &N. This is indeed what we observed in Fig. 5.1.9(c). The reentrance observed in

magnetoresistance oscillations in sample B is an indication that these oscillations are

dependent on the proximity effect in the normal arm of the hybrid loop.

5.2 Conclusion

In conclusion, we have investigated the reentrance effect in two mesoscopic NS hybrid
loops with different interface transmittances. This reentrance effect was due to the long
range coherence of the electron-hole pairs Andreev reflected from the NS interfaces in the
sample. The effect of the transmittance on the reentrant behavior was qualitatively
demonstrated by these two samples. The sample with high interface transmittances showed
the reentrance effect in R(T), dV/dI(V) and amplitude of magnetoresistance oscillations.
The reentrance effect was not observed in the sample with low interface transmittances.
The observed reentrance effect is qualitatively well explained by the theory of quasiclassical
Green functions. However, based on our theoretical simulation of the measurements, there
exists a quantitative discrepancy between the theory and the experimental results. The
discrepancies include: (i) At low temperatures or voltages, the locations of the temperature

T , or voltage V. where the minimal resistance, differential resistance, or amplitude of

magnetoresistance oscillations occur do not agree with the theoretical predictions. (ii) At

high temperatures or voltages close to Tc or A, the theoretical prediction shows a much
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slower recovery of the normal metal resistance than the experimental results at high

temperatures or bias voltages.

These two discrepancies have been seen in other experiments as well. In the

experiments by Courtois et al. [13], T ,,and V_. are measured on a short N wire with a S
stripe in the middle. Both T_. and V__._are not located at the theoretical prediction of 5E_.

In the experiments on 2DEG connected to a superconductors [15-17], the reentrance effect
on the amplitude of magnetoresistance oscillations is not easy to compare with the
theoretical prediction due to the difficulty in identifying the geometry of the sample.

Nonetheless, rough estimates of T ,,and V . in these 2DEG systems, although are about
the order of SE , also show some discrepancies. At higher temperatures, experimental

results from both systems show the same behavior as our observation, i.e., the normal

state resistance is recovered much more slowly than the theory predicts.

These previous disagreements along with our results raise the question about the
applicability of the theory to our samples, or, the suitability of the experimental geometry to

the theory. We discuss below the possible reasons for this discrepancy.

In our numerical calculation and in all other numerical calculations, the following
assumptions are made: (i) The energy gap of the superconductor is much larger than the
energies and temperatures involved in the measurement. However, this assumption is not
valid for the superconductor (Al) used in our experiment. An improved experiment may be
done in a system where the superconductor possesses a larger energy gap such as niobium.

(i) Phase breaking is neglected in our simulation under the assumption that the sample size



170

is much shorter than L(p. This may cause an intrinsic difference in the measurement of
R(T) and dV/dI(V). Lq, is temperature dependent in our range of measurement and it is not

clear how to take this temperature dependence into account in the theory. (iii) We have
assumed perfect NS interfaces in Sample B. The influence of the NS interface
transmittance on reentrance effect needs further investigation. (iv) The superconducting
reservoir in our system is a mesoscopic 1D wire. It is quite likely that the
superconductivity in this wire is suppressed due to its proximity to the normal metal, or by
the presence of a transport current. Lastly, there is no quantitative comparison between the
theory and the experimental results on the reentrance effect in the amplitude of
magnetoresistance oscillations. Due to the complexity of our sample geometry, it is
difficult to perform this comparison. We hope to investigate this problem in a system of

different geometry in the future.

To illustrate some of the discrepancies, we present a transport measurement on a 1D
N-S wire, showing some interesting features regarding the problems discussed above.
Fig. 5.2.1 is the resistance measured across a 1D N-S wire, with the geometry and the

dimensions shown in the inset. At T, it shows a sharp drop in resistance similar to that

observed in R(T) of Sample B. This sharp drop corresponds to the decrease in resistance
of the S part of the wire at the superconducting transition. At T ~ 1K, the resistance of the
N-S wire reaches its minimum and increases at lower temperatures. This behavior is very
similar to what we observed in R(T) of Sample B. However, a rough estimate of the

Thouless temperature TeC (kBTec=EC) of the N wire gives a value (10 mK) much lower than

1K, which is a consequence of the long length of the N wire. On the other hand, the

resistance saturates a: very low temperatures, implying a reentrant behavior. The increase
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of resistance near Tc is different from the observation of Petrashov et al. [10-11], where the

resistance was enhanced to a value above the normal state resistance similar to the

resistance anomaly described in Chapter 4.

The large discrepancy between the experiment and the theory in this sample points
to the need for further experiments. We have extended the investigation of reentrance effect
to a single 1D normal wire connected to a normal reservoir in one end and superconducting
reservoir in the other. By varying the length of the normal wire, we hope to acquire more

understanding of the reentrance effect.



Chapter 6

Conclusions

We have studied charge imbalance and the proximity effect through charge transport in
mesoscopic samples containing pure superconductors or normal-metal/superconducting
interfaces at temperatures below the critical temperature of the superconductor involved. In
the experiments related to charge imbalance, the previously observed resistance anomaly in
ID pure superconductors was investigated by applying rf radiation, magnetic field, and
noise signals to the pure superconductor. Through detailed analysis and comparison
between different measurements, we have found again that phase-slip centers in these pure
superconductors play an important role in explaining the observed resistance anomaly. A
further investigation of this resistance anomaly is extended to 1D NS systems. In these 1D
NS systems, there already exist nonequilibrium regions about the NS interfaces.
Therefore, one does not need to apply any external factors to observe the resistance
anomaly mentioned above. However, some of our results suggest there may exist
additional phase-slip centers in the samples. Furthermore, we observed some interesting
results related to the resistance anomaly when small magnetic fields are applied to these NS
samples. These results may be related to the coherent nature of quasiparticles in the non-

equilibrium superconductors.

In experiments related to the proximity effect, the reentrant behavior of the normal
metal resistance was observed in the diffusive regime through three transport
measurements, i.e., R(T), dV/dI(V) and R(H) at different temperatures. While this

reentrance effect can be qualitatively explained by the theory of quasiclassical Green
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functions, the comparison of our theoretical calculation with the experimental results shows
discrepancies. We have discussed some possible reasons for these discrepancies and

suggested the direction of further investigation.

The conclusion and further development of our current understanding of charge

imbalance and proximity effect are summarized in the following sections.

6.1 Resistance anomaly

Pure superconductors

In our study of the resistance anomaly in 1D superconducting wires or loops, we found
that the resistance anomaly could be induced by radio-frequency (rf) radiation , magnetic
field, or noise current. However, the origins of these resistance anomalies are different.
The rf and magnetic field induced resistance anomalies are a result of charge imbalance in
the sample. This charge imbalance is due to the formation of a PSC in the sample when the
rf signal or magnetic field is applied. While the magnetic field induced PSC is clearly due
to the suppression of the order parameter in the sample, the microscopic mechanism
responsible for the rf induced PSC is still not clear. The noise induced resistance anomaly,
on the other hand, is due to the mixing of different frequency ac signals existing in the
measurement. The manifestation of the noise induced resistive anomaly is similar to that
produced by a rf signal or magnetic fields except that one does not observe negative
differential resistance in the noise induced anomaly. Therefore, in and of itself, it does not
provide a complete explanation for the resistance anomaly observed in the pure mesoscopic

superconducting wires.
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Normal-metal/superconducting wires and loops

Resistance anomalies observed in the 1D normal-metal (N)/superconducting (S) systems
show several properties in addition to those observed in pure superconductors. These
properties are : (i) The amplitude of the resistance anomaly shows a nonmonotonic
behavior as a function of magnetic field in the N-S wire. The magnetic field dependence of
the charge imbalance length may explain this nonmonotonic behavior. (ii) Magnetic field
dependent negative differential resistance dips are observed in the N-S loop structures.
Based on the charge imbalance model, this implies that the pair chemical potential in the
charge imbalance region is sensitive to the phase of the superconductor. If one can
modulate the phase, it may be possible to detect this property through existing
measurements of charge imbalance, i.e., resistance anomaly or excess voltage. (iii) The
negative differential resistances observed in the N-S loops shows a two-level switching
behavior, whose switching rate increases as a function of temperature, suggesting the
presence of an energy barrier. This behavior may be the threshold energy required for

nucleating a PSC in the system.

6.2 Reentrance effect

We have observed the proximity regime reentrance effect in three transport measurements,
R(T), dV/dI(V) and the temperature dependence of the magnetoresistance oscillation
amplitude in a single N-S hybrid loop. This effect is due to an anomalous proximity effect
in the normal metal of our devices and is qualitatively well explained by the theory of
quasiclassical Green functions. However, a detailed quantitative comparison of the

theoretical calculation with the experimental results shows several discrepancies. For better
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agreement between theory and experiment, we believe it is necessary to extend the range of
the theory and calculations to take into account effects such as a finite temperature-
dependent phase coherence length, the temperature dependence of the gap in the

superconductor, and suppression of superconductivity in the superconducting elements.

6.3 Future work

Excluding possible measuring defects stemming from signal mixing, present investigations
on the resistance anomalies observed in mesoscopic pure superconductors point to one
explanation: a PSC induced charge imbalance. However, the current understanding of the
properties of PSC in such systems still leaves much to be discussed. In the mesoscopic
systems containing NS interfaces, we observed negative differential resistances similar to
the observations by Park et al. In a WS system [S]. These negative differential resistances
were further shown to be metastable and phase sensitive. If the negative differential
resistances are due to PSCs in the sample, this 1D NS system may provide another way of
studying the properties and origin of PSCs and help us acquire more knowledge in the

superconductor through its nonequilibrium properties.

In the study of proximity effect, our investigation on the reentrance effect in a
diffusive NS loop motivates further study in the following direction. To provide a concrete
test of the theory, the system studied should be simplified to a 1D normal wire connected to
a superconducting reservoir on one end and a normal reservoir on the other. In terms of
theory, effects present in real samples, such as inelastic scattering and electron-electron

interaction need to be incorporated in the simulation using quasiclassical Green functions.
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The influence of boundary conditions on the quasiclassical Green functions induced in the
normal metal can be studied through the roles of the normal reservoir, the superconducting
reservoir, the NS interface, and the phase gradient induced by external factors such as

magnetic field and supercurrent.

At the moment, there is no theoretical bridge between the low temperature, low
energy regime of the proximity effect description and the higher temperature, higher energy
regime of the theory of non-equilibrium superconductivity. In the proximity effect regime,
phase coherence plays an important role, but the effect of spatially varying potentials has
not been investigated thoroughly. In the non-equilibrium regime, phase coherence of the
carriers is usually ignored, but the spatial variation of the pair and quasiparticle potential is
critical. Our experiments show that both factors are important in both regimes, and a

theory which smoothly connects both regimes is needed.
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