
NORTHWESTERN UNIVERSITY

Nonequilibrium and Quantum Transport Phenomena in

Mesoscopic Ferromagnet/Superconductor Heterostructures

A DISSERTATION
SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
for the degree

DOCTOR OF PHILOSOPHY

Field of Physics

By
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ABSTRACT

Nonequilibrium and Quantum Transport Phenomena in Mesoscopic
Ferromagnet/Superconductor Heterostructures

José Aumentado

Although the past twenty years have seen much progress in the understanding of
mesoscopic electronic transport, many novel devices remain unexplored. In con-
trast to nonmagnetic, normal mesoscopic structures, our understanding of similarly
scaled ferromagnetic devices is minimal. This is in part due to the experimental dif-
ficulties of analyzing transport in the presence of nonhomogeneous magnetic fields
since ferromagnetic structures may support magnetic structure on length scales
comparable to the submicron dimension of many proposed devices. Such diffi-
culties must be eliminated when assembling devices in which such ferromagnetic
elements may be important elements in more complicated heterostructures (e.g.,
ferromagnet/normal, ferromagnet/superconductor, etc.). In this sense it is im-
portant to understand the electronic transport properties of the single submicron
ferromagnetic elements that may comprise these more complicated heterostruc-
tures.

In this dissertation we examine the electronic transport properties of single
submicron ferromagnets and demonstrate how macroscopic ferromagnetic trans-
port issues translate to submicron dimension devices. Our measurements indicate
that many of the considerations taken in understanding mesoscopic nonmagnetic
normal metals (e.g., quantum interference and probe switching symmetries) are
also applicable to submicron ferromagnetic metals with additional complications
due to the inherent magnetic structure. These complications manifest themselves
through anisotropic contributions to the resistivity tensor which are a function
of magnetization direction within a ferromagnetic structure and are much more
pronounced when the dimensions of the element are reduced to the micrometer
scale.

Finally, we apply this knowledge of single submicron ferromagnetic transport
to investigate the possibility of a superconducting proximity effect in ferromag-
net/superconductor heterostructures. It is found that such an effect is minimal in
our systems yet the resistance of the interface between the ferromagnet and su-
perconductor can display strong dependences on the temperature, magnetic field
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and energy bias. These results are discussed within the framework of the Blonder-
Tinkham-Klapwijk model of transport in a normal/superconductor interface with
modifications for the spin-polarized current of the ferromagnetic metal.
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Chapter 1

INTRODUCTION

The field of mesoscopic physics has matured a great deal since the earliest confir-
mation of electronic phase coherence at experimentally accessible length scales. In
semiconductors, the phase coherence length lϕ may exceed many tens of microns at
low temperatures while nonmagnetic normal metals generally show phase coherence
at lengths of only a few microns to a few tens of microns at similar temperatures [1].
In this sense, in metallic structures it can be more difficult to look for signatures
of phase coherent transport such as weak localization, conductance fluctuations,
and Aharanov-Bohm oscillations since the necessary size regime is restricted to
submicron structures. Despite these difficulties, the aforementioned effects are
well-studied experimental realities [2] and the focus has shifted to nonequilibrium
phenomena in recent years, necessitating the fabrication and measurement of rel-
atively more complicated heterostructures.

While normal-superconductor (NS) heterostructures have been used to investi-
gate the problem of nonequilibrium superconductivity, ferromagnetic heterostruc-
tures remain a largely unexplored topic. This is in part due to the lack of a con-
sistent picture of ferromagnetic electronic transport at small scales. Additionally,
although quantum transport has been verified at micron length scales in nonmag-
netic normal metals, the same is not true for mesoscale ferromagnetic devices and
is a motivating question for many mesoscopic experimentalists. Currently a num-
ber of groups around the world are beginning studies in submicron ferromagnet-
superconductor (FS) structures, focusing on possible superconducting proximity
effects on the ferromagnetic (F) side. Since such structures include F components
of various geometries, it is a necessary first step to understand the constituent
transport phenomena prior to understanding more complicated heterostructures.
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1.1 Mesoscopic Ferromagnets?

1.1.1 Phase coherence and quantum interference

The primary length scale of interest in many mesoscopic devices is the phase co-
herence length lϕ. lϕ is the average distance an electron may diffuse before losing
memory of its phase, and therefore provides a scale within which one may observe
the wave nature of these electrons. As one may suspect, this wave nature mani-
fests itself in “quantum interference” phenomena and may be seen unambiguously
in experimental observables such as the resistance/conductance. Such phenomena
(e.g., weak localization (WL) [3] and conductance fluctuations (CF) [2,4]) are more
easily observed when a sample’s dimensions are reduced to those comparable to
lϕ, and subsequently samples may be labeled “quasi-1D” or “quasi-2D.” Conven-
tionally, devices which are fabricated with any dimension smaller than lϕ are also
labeled “mesoscopic.” However, in practice the term has been used to describe
any structure of submicron dimension, regardless of the electronic length scales
involved. This is important because, for practical purposes, lϕ has never been ex-
perimentally determined in a ferromagnetic device. While weak localization has
proved a reliable method of determining lϕ in nonmagnetic materials (i.e., Au, Al,
Ag, Cu, etc.), it is generally restricted to low applied magnetic fields (< 1 kG).
Therefore it is difficult to perform such standard measurements in common elemen-
tal ferromagnetic metals (Fe, Ni, Co), since the intrinsic magnetic field due to the
magnetization may exceed many kilogauss. However, WL is not the only signature
of phase coherence and, as we shall see, a more appropriate indication of quantum
transport in ferromagnets may be the presence of CF. In any case, the current
lack of experimental confirmation of an appreciable level of phase coherence in a
ferromagnetic metal is a tantalizing aspect of any study of mesoscale ferromagnetic
elements and one to which we will draw our attention in our own experiments.

1.1.2 Contributions to the magnetoresistance

In principle, it should be possible to establish the existence of phase coherent trans-
port (such as CF and even WL) in ferromagnetic devices if lϕ is on the order of 102

nm1 since conventional e-beam lithography techniques can define features <100

1In most of the commonly studied metals lϕ is only appreciably long (with respect to the
device size) at temperatures below ∼10 K. For this thesis it will always be assumed that lϕ is
discussed in the context of experimentally accessible low temperatures, e.g., lϕ is “short” if it is
smaller than what we can define with e-beam lithography, at a base temperature 20–300 mK.
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nm in lateral dimension. However, unlike nonmagnetic metals, ferromagnetic met-
als bear two other contributions to the resistance— anisotropic magnetoresistance
and the anomalous Hall effect. These two effects are bulk phenomena, yet mani-
fest themselves in unique ways at the submicron scale and must be accounted for
separately from the quantum transport effects.

It will be shown that each of the above contributions to the magnetoresistance
may be separated and understood independently. Such considerations will even-
tually be important in defining what is meant when one discusses “mesoscopic
ferromagnets” and will contribute to methods for engineering possible “spintronic”
devices which may incorporate these elements.

1.2 Normal/Superconductor and ferromagnet/superconductor
heterostructures

In the past five years interest in nonequilibrium phenomena has motivated the fab-
rication of novel mesoscopic heterostructures. NS devices have been measured by
many groups in an effort to understand mesoscopic nonequilibrium superconduc-
tivity (e.g., charge imbalance and the superconducting proximity effect). Recently,
many workers have shifted their focus and have begun to study similar phenomena
in FS heterostructures both experimentally [5–9] and theoretically [10–13].

There has been much debate about the origins of the effects seen by the few
groups who have studied this problem so far [14], yet a common aspect of all of
the published FS experiments to date is the utilization of device geometries which,
while appropriate for NS devices, suffer from ill-characterized magnetization dis-
tributions due to the micromagnetic nature of the constituent ferromagnetic ele-
ments. Despite these complications, the results are intriguing. Strong temperature
dependences in the resistance of the ferromagnetic elements seem to indicate that
electron pair correlations may decay over a few hundred nanometers from the FS
interface into the ferromagnet [6, 9], while theorists object to such a large length
scale on the grounds that the presence of a strong exchange field should depair
these correlations within a few nanometers [11].

1.3 Overview of this thesis

In Chapters 2 and 3, I outline the theoretical and experimental background nec-
essary for both single ferromagnetic particle and NS/FS transport in order to
establish a context for our experiments. Specifically, in Chapter 2, we examine
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the theoretical bases for the various resistance contributions relevant to mesoscale
ferromagnetic metals as well as an overview of some of the recent transport experi-
ments in this field. Chapter 3 gives an overview of the Blonder-Tinkham-Klapwijk
model of NS transport, with the necessary extensions for FS structures, as well as
a survey of recent FS experiments. Chapter 4 details the experimental techniques
(fabrication and measurement) necessary to complete our studies. Chapters 5 and 6
describe our experiments in single ferromagnetic elements and FS heterostructures,
respectively. Finally, Chapter 7 provides a summary of our results and conclusions.



Chapter 2

SINGLE FERROMAGNETIC PARTICLE TRANSPORT:
EXPERIMENTAL BACKGROUND AND THEORY

2.1 Mesoscale ferromagnetic transport

In principle it is not difficult to deposit a ferromagnetic metal instead of a non-
magnetic one, and so it is interesting to note that despite a fairly established
literature in mesoscopic nonmagnetic experiments, there is no corresponding body
of experiments in ferromagnetic metals. As mentioned previously, this lack of ex-
periment in mesoscale ferromagnetic transport may be largely due to difficulties
in interpretation. Besides well-known transport phenomena such as weak local-
ization (WL) [3], conductance fluctuations (CF) [4, 15], electron-electron interac-
tions (EEI) [16], Hall effect (HE) [17], Lorentz-type magnetoresistance (LMR) [18],
which are seen in nonmagnetic metal samples, there are additional contributions
such as an anisotropic magnetoresistance (AMR) [19] and an anomalous Hall effect
(AHE) [18] which are specific to ferromagnetic metals. Complicating all of these
effects is the presence of domain structure which may provide a very disordered
local magnetic field distribution which is hysteretic and possibly nonreproducible.

Despite these difficulties there are a few experiments which attempt to tackle the
question of quantum transport specifically while there are also a number of recent
experiments which demonstrate the importance of AMR in analyzing micromag-
netic distributions of mesoscale ferromagnets. In the discussion that follows, we
shall examine some of these experiments as we consider the various contributions
to the magnetoresistance (MR) as listed above.

2.1.1 Anisotropic magnetoresistance

In ferromagnetic metals it was found early on that the magnetization direction
played an important role in the resistance. In fact, Thomson (a.k.a. Lord Kelvin)
noted this phenomenon in 1857 [20], yet it would take almost a century for the
problem to be tackled experimentally and theoretically [21]. In that and subsequent
work (see Ref. [19] for a review) it was found that the resistivity could be broken
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up into three contributions: ρ‖, ρ⊥ and ρH , with the subscripts “‖/⊥” denoting
the direction of the magnetization with respect to the current path and “H” the
Hall contribution. This anisotropic behavior has proven to be a useful element
in the data recording industry since it provides yet another electronic probe of
the magnetization [19]. For this reason, AMR has been studied quite extensively
over the past thirty years, often in thin film devices. However, the advent of
more advanced lithographic techniques has opened up the possibility of smaller
ferromagnetic electronic elements and the need to understand how AMR scales at
ever-decreasing dimensions.

We begin by examining the AMR from the resistivity tensor. From symmetry
arguments [22, 23] the resistivity tensor for a polycrystalline magnetic medium
saturated in the ẑ direction is of the form:

[ρij] =


ρ⊥(B) −ρH(B) 0
ρH(B) ρ⊥(B) 0

0 0 ρ‖(B)


 . (2.1)

In terms of the electric field E, the current density j and the magnetization
direction unit vector α, we can rewrite Eqn. 2.1 as [18],

E = ρ⊥j + [ρ‖ − ρ⊥][α · j]α + ρHα × j. (2.2)

The resistivity can be expressed as ρ = E · j/j2, which can be used to reduce
Eqn. 2.2 to a simple relation between the resistivity ρ and the relative angle θ
between the magnetization and the current,

ρ(θ) = ρ⊥ + ∆ρAMR cos2 θ, (2.3)

where ∆ρAMR ≡ ρ‖ − ρ⊥. Since AMR is a microscopic effect, it should be real-
ized (especially in mesoscale devices) that the resistivity has a local anisotropic
character, i.e., ρ(θ(x)). The result of this consideration is that all resistance
measurements are really integrations along current paths and must include the
magnetization distribution through a term ∝ cos2 θ(x) or more explicitly,

ρ(x) ∝
(

j(x) · M(x)

|j||M |

)2

. (2.4)

In this sense, the AMR effect becomes a useful tool for analysis if the magnetization
of a device is very uniform. Likewise, it becomes an unwieldy quantitative tool
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Figure 2.1: Schematic view of AMR effect in magnetoresistance with extrapolation
to B = 0 values. (Figure taken from Ref. [18])

when a magnetization distribution has broken up into domains since the resistance
will only be a spatial average if the voltage probe spacing is larger than the domain
size.

It is important to note that the values for ρ‖,⊥ are extrapolated to their zero-
magnetic induction values. This is done to subtract out other magnetoresistance
contributions, yielding values intrinsic to the magnetization direction and not the
magnitude of the total internal field. Even at zero applied magnetic field, there
exists an internal field due to the magnetic dipole moments (4πM) as well as a
“demagnetization” field (−4πDM) which is dictated by the magnetostatics (read:
geometry) of the specimen [24]. The relationship between the magnetic induction
and the various field contributions is compactly expressed:

B = Happ + 4π(1 −D)M . (2.5)

To see how this extrapolation procedure is performed it is useful to first exam-
ine how the AMR manifests itself in MR measurements. Figure 2.1 illustrates the
magnetoresistivity for magnetization both parallel (‖, top trace) and perpendicular
(⊥, bottom trace) to the current path. In this example we assume that in zero
applied field the magnetization breaks into many domains and that the net mag-
netic moment is zero. With this assumption, both the parallel and perpendicular
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resistance traces begin at the same value. An initial state such as this is usually
termed the “demagnetized” state. Averaging Eqn. 2.3 over all relative angles [19]
yields the value of this resistance to be,

ρ =
ρ‖ + 2ρ⊥

3
. (2.6)

As the applied field is increased, the magnet is saturated and the curvature sta-
bilizes into a Lorentz-type MR. It is this field dependence that is extrapolated
to B = 0, ignoring the low-field curvature which is due to gradual alignment of
domains, and accounting for the additional internal magnetic field due to the mag-
netization as noted above. With the values ρ‖ and ρ⊥, one may then define the
AMR ratio,

ΓAMR ≡ ∆ρAMR

ρ
. (2.7)

For transition metal ferromagnets this ratio is typically <5 %, but can be as large as
20–30% in particular transition metal alloys [18, 19]. This ratio is usually positive
(ρ‖ > ρ⊥) although exceptions have been noted in domain wall (DW) scattering
experiments in epitaxial Fe films on GaAs [25–28] below ∼65 K, which may be
more a function of competing temperature dependent scattering mechanisms in
such high quality samples.

Now that we have a phenomenological picture of the AMR effect, we briefly
review the microscopic nature of the anisotropy. As pointed out by Mott and
Wills [29] in 1936, the current in 3d metals is mostly carried by s electrons since
the d electron effective mass m∗

d is large. Since the density of d states Nd(εF ) is
much larger than that of the s states, the dominant contribution to the resistance is
s→d interband scattering. Originally this model was used to explain the increase
in resistivity as a transition metal was cooled through its Curie temperature, as
ferromagnetic ordering exchange splits Nd(εF ) into separate spin states, effectively
decreasing the available majority spin states to zero.

Having established that sd scattering is the dominant contribution to the re-
sistance, we must now ask where the anisotropy arises. The Mott picture as-
sumes isotropic bands and, thus, isotropic scattering. The generally accepted pic-
ture [19, 21] singles out the spin-orbit interaction between electrons and lattice
atoms as the source of the anisotropy. This was first proposed by Smit [21] who
treated the spin-orbit interaction, Hso = λL · S, as a perturbation and calculated
the d wavefunctions assuming cubic-symmetric unperturbed wavefunctions, ψ0

d.
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Recognizing that the spin-orbit interaction term decomposes into L±S∓ contribu-
tions (which have the effect of mixing opposite spin states), Smit found that the
resulting ψ1

d indeed exhibited a lower than cubic symmetry.1 In short, the effect
of the spin-orbit interaction was to contribute an anisotropy to the sd scattering
mechanism. Smit’s calculations also show that the probability of sd scattering in
the direction of M is increased, resulting in ρ‖ > ρ⊥ and ΓAMR > 0 — a result
confirmed by most experimental evidence [18, 19], with some exceptions as noted
above [25–28].

Corrections in reduced geometries

While the mechanism behind AMR can explain the anisotropic resistive response
to the magnetization direction, the situation poses additional complications when
the dimensions of the sample become comparable to the elastic mean free path
since collisions with the boundaries then become more probable for conduction
electrons. Starting from the Boltzmann equation, one usually assumes an isotropic
distribution of electron velocities in the bulk. This distribution is considerably
modified near surfaces, and this is reflected in a general increase of the resistivity
over the bulk value in thin films. This correction to the conductivity was first
pointed out by Fuchs [30] and Sondheimer [31] in nonmagnetic thin films over
fifty years ago, showing a monotonic increase in the resistivity over the bulk value
as the film thickness was decreased. Rijks et al. [32] were the first to recognize
the importance of these effects in ferromagnetic thin-film and wire geometries by
introducing an anisotropic elastic mean free path l(θ), showing that the AMR
ratio in thin films is actually divided into two distinct values which are correlated
to magnetizations directed perpendicular to the current path but in the sample
plane [perpendicular-in-plane (PIP)], and magnetizations directed perpendicular
to the current path but normal to the sample plane [perpendicular-out-of-plane
(POP)]. Rijks et al. [33] later confirmed these predictions experimentally, showing
a reduction in the PIP AMR ratios as the dimensions were decreased [33].

The splitting of the in-plane and out-of-plane resistivities can be incorporated
into the resistivity tensor ρij (Eqn. 2.1), by allowing the ρxx and ρyy components
to differ. Following the definition of the resistivity as before (ρ = E · j/j2), we

1Details of this calculation are beyond the scope of this thesis, but may be found in Ref. [19]
and references therein.
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j

M

Figure 2.2: [Schematic representation of in-plane and out-of-plane angles for low-
dimensional AMR corrections. θ is the angle of the magnetization relative to the
current direction j in the sample plane. φ is the angle corresponding out-of-plane
angle.

arrive at a relation to replace Eqn. 2.3,

ρ(θ, φ) = (ρPIP cos2 φ+ ρPOP sin2 φ) sin2 θ + ρ‖ cos2 θ, (2.8)

with ρPIP and ρPOP the resistivities with the magnetization pointed perpendicu-
larly in-plane and out-of-plane, θ the relative angle (in-plane) between the mag-
netization and current direction and φ the angle of magnetic deviation from the
plane (see Fig. 2.2).

2.1.2 Lorentz magnetoresistance

Another “classical” contribution to consider when analyzing the electronic mag-
netotransport is the Lorentz magnetoresistance (LMR), i.e., the resistance due to
trajectories curved by the Lorentz force on individual electrons. For our purposes,
we will simply estimate the order of magnitude and field dependence. The magne-
toresistance from this mechanism should arise in a change in the electron elastic
mean free path, l, as the magnetic field is applied, increasing the length of an
electron’s arc-like trajectory between scattering centers. For a cyclotron orbit of
radius rL, the difference between the arc length and its corresponding chord can
be written as

∆l = rLϕ− 2rLsin
ϕ

2
(2.9)

or,

∆l ≈ 1

3
rL(

ϕ

2
)3 (2.10)
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if one assumes small fields, restricting the difference to small angles. Since this
mechanism is only appreciable for arclengths on the order of l we can approximate
rLϕ ∼ l, giving ∆l ∝ l3/Rl. For small ∆l, the correction to the resistance is then,

∆ρ

ρ
∝

(
l

rL

)2

(2.11)

and finally,

∆ρ

ρ
∝ (ωcτ)

2

∝ B2, (2.12)

recognizing that the Larmor radius rL = v/ωc and that the Larmor frequency
ωc = eB/m∗c. We must remember, though, that this result was derived under the
assumption of isotropic bulk scattering, and is subject to Fuchs-Sondheimer effects
when the dimensions are reduced as noted above. This “galvanomagnetomorphic”
effect [34] may then have the opposite effect of reducing the B2 dependence. In
practice, an almost linear dependence is found in most thin film magnetoresistances
above saturation [19,21,25–28,35].

2.1.3 Quantum transport: weak localization and conductance fluctuations

Prior to discussing the mechanisms of quantum interference, we should pause to
reflect how it is possible to observe the wave nature at all in what should be a
nominally macroscopic quantity (i.e., the resistance). Ultimately this reduces to
the question of how a conduction electron can retain memory of its phase over
micron length scales.

We know from experience that the mean free path in the metallic thin films
deposited in our lab is only of the order of a few tens of nanometers and so it is
surprising that an electron can diffuse over much longer lengths, scattering many
times before its phase is completely uncorrelated to its starting phase. The key
to understanding this is the realization that these elastic scattering events do not
randomize the phase and, thus, do not decohere a diffusing electron. Rather, deco-
herence occurs either through inelastic scattering processes (e.g., electron-phonon
and electron-electron) or scattering with isolated fluctuating magnetic moments
(spin-scattering). The electron-phonon and electron-electron scattering lengths
may exceed many tens (or hundreds) of microns at low temperatures [36] and,
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for this reason, most mesoscopic quantum transport experiments are performed at
T < 10 K. To eliminate the spin-scattering contribution, experimentalists are care-
ful to minimize the magnetic impurities present in their metal deposition systems.
When these conditions are observed, the phase coherence length lϕ may exceed
many tens of microns [37].

Having noted the sensitivity of lϕ to spin-scattering via magnetic impurities,
it is natural to wonder whether this precludes the possibility of a similarly long
lϕ in ferromagnetic materials. To answer this it is necessary to realize that spin-
scattering processes randomize the electron phase when the magnetic impurity
itself experiences time dependent fluctuations in its magnetic moment [38]. Addi-
tionally, if enough magnetic impurities are present and a system is cold enough, a
spin glass state may be created, giving a highly inhomogeneous magnetic field dis-
tribution which would suppress weak localization corrections to the conductivity.
However, ferromagnets are, by nature, assemblies of long-range correlated magnetic
moments and paramagnetic fluctuations are almost completely suppressed at low
temperatures. Inhomogeneous field distributions may still be present in the form of
domain structure; however, this can be eliminated by saturation in a strong mag-
netic field or by careful micromagnetic design. In principle, the decoherence issues
raised by magnetic impurities in nonmagnetic normal metals are mostly irrelevant
in ferromagnetic metals since fluctuations are likely to be suppressed by the long
range magnetic order. It is curious, then, that there has been no definitive con-
firmation of mesoscale phase coherence in ferromagnetic metals. In what follows,
we will discuss the basics of two particular phase coherent (or quantum transport)
phenomena as well as the few relevant experiments in ferromagnetic metals.

Weak localization

The theory of weak localization (WL) was developed in the late seventies using a
diagrammatic perturbation theory [39, 40]. In essence, it predicts a correction to
the usual Boltzmann conductance (σ0 = ne2τ/m) of order e2/h which is due solely
to the wave nature of the electron wavefunction. These corrections were originally
considered negligible since they were of order 1/kF l in the perturbation series which
described the conductivity [41]. An intuitive physical picture was later suggested
by Bergmann [42] who pointed out that WL could be understood as a coherent
backscattering mechanism which enhances the probability of remaining (or being
“localized”) at the origin. Quantum mechanically this can be understood in the
Feynman path integral formalism [43]. We know that the probability of propagating
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from r to r′ over a time t can be expressed as

P (r, r′, t) = |
∑

i

Ai|2

=
∑

i

|Ai|2 +
∑
i�=j

A∗
iAj (2.13)

where the Ai are probability amplitudes for all possible trajectories between r
and r′ (see Figure 2.3(a)). The first term describes the classical diffusion prob-
ability, summing the probabilities of all trajectories separately, while the second
term contains the interference terms between trajectories since the phase is not
conjugated out. If we allow r′→r, P (r, r, t) will describe all closed loop trajec-
tories (i.e., all backscattering paths; see Figure 2.3(b)). Since each of these loops
can be decomposed into clockwise and counterclockwise trajectories one can define
Acw =

∑
iAi,cw and Accw =

∑
iAi,ccw. In the absence of a magnetic field these two

contributions are essentially time reversed versions of each other and Acw = Accw.
If we rewrite Eqn. 2.13 for these closed loop trajectories we have

P (r, r, t) = |Acw + Accw|2
= 4|Acw|2. (2.14)

This is exactly twice the classical return probability. One can return to Eqn. 2.13
and see that this can only be accounted for if the interference terms A∗

iAj are
constructive— a direct consequence of the time-reversal symmetry of the clockwise
and counterclockwise paths. It is this enhanced probability for return that provides
the localization and this, in turn, enhances the resistance. The time-reversal sym-
metry itself may be broken by application of a small magnetic field and, indeed,
this effect can be seen in a reduction of the resistance. This is only the case for
metals where the spin-orbit scattering is weak. In metals such as Au, the spin-orbit
scattering is strong and the characteristic localization peak in the magnetoresis-
tance is replaced by a dip, and the effect is often called “anti-localization.” This
is beyond the scope of this thesis, but an excellent review of the theoretical and
experimental work appears in Ref. [42].

Additional notes on the observability of weak localization in ferromagnets

Since small fields seem to suppress WL in the nonmagnetic metal devices most ex-
perimentalists are familiar with, it seems obvious that ferromagnetic metals would



14

Figure 2.3: Physical picture of the weak localization/coherent backscattering mech-
anism. (a) Trajectories between r and r′. (b) Closed loop trajectories (r′→r)
responsible for coherent backscattering.
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make poor specimens for WL studies due to the large internal fields present (e.g.,
for Ni, 4πM ∼6.3 kG). We can explore this issue further by examining the critical
field Bc,WL beyond which WL is suppressed. Bc,WL can be estimated by determin-
ing the field necessary to shift the phase by 2π along a maximal phase coherent
loop area Aϕ, i.e.,

Bc,WL ∼ Φ0

Aϕ

, (2.15)

where Φ0 = hc/2e (=20.7 Gµm2 in practical units), the superconducting flux quan-
tum. This area takes on different forms depending on whether the dimensions are
less than lϕ or not. In one dimensional samples (i.e., with width and thickness less
than lϕ), with micron scale lϕ, the critical field is typically less than a few hundred
Gauss, much less than typical ferromagnet internal fields. However, Bc,WL can be
raised considerably by reducing the perpendicular area exposed to the magnetic
field as would be done if the field were directed lengthwise along a narrow wire sam-
ple. If the width and thickness are less than the phase coherence length (w, t < lϕ),
then the relevant Aϕ = wt. With typical dimensions, w =100 nm and t =30 nm
this yields Bc,WL = 6.9 kG, which is slightly greater than the internal magnetic
field in Ni! For this reason, a longitudinal MR measurement may provide a feasible
method of observing a ferromagnetic WL effect as long as these size restrictions are
considered. Since the main obstacle in the problem is nonuniform magnetization at
small fields, another much simpler method may be to simply saturate the magne-
tization along an easy axis, and apply small fields perpendicular to this axis. This
has its own complications however, since the magnetization will rotate somewhat
with the vector sum of the applied fields and again AMR must be considered.

Conductance fluctuations

Besides WL, there is an additional correction to the conductance which is also
due to quantum interference of electron wavefunctions. Perhaps the easiest way
to visualize this contribution is to extend the wave analogy to standing waves in a
shallow pool filled with a number of obtrusions. The obtrusion distribution drives
the formation of a complicated standing wave interference pattern which can be
drastically altered by even minute obtrusion rearrangements. In a metallic sample,
this would correspond to a change in the conductance with a minute change in
the impurity distribution. In metals, the impurity mobility may be thermally acti-
vated and one be able to rearrange the impurity distribution simply by heating the
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sample. Repeating this many times, one would find the conductance to fluctuate
by ∼ e2/h about the average. In practice, temperature cycling can be tedious, and
the conductance fluctuations (CF) may be observed in a more dramatic way by
ramping a magnetic field. The magnetic field has the effect of shifting the phase
of the electron trajectories, but since there are many scatterers and many trajec-
tories, the phase shifts at any point in a sample are never uniform with respect
to the magnetic field. Alternatively, one can forego the pool analogy entirely and
examine the interference term from Eqn. 2.13 directly. Since we are interested in
the rms conductance fluctuation magnitude δG, we can alternately examine the
variance of the diffusion probability from r to r′, P (r, r′, t) (Eqn. 2.13), or more
specifically its interference term

∑
i�=j A

∗
iAj. In general, each amplitude Ai will

have an associated phase φi ∝
∫

A ·dli where A is the vector potential incorporat-
ing the magnetic field dependence. The interference term will then be ∝ cos ∆φij

(where ∆φij ≡ φi − φj). The variance will then have <cos ∆φij>
2 terms which

average to zero over the phase, while <cos2 ∆φij>= 1/2. It is this nonzero variance
that manifests itself in CF in the magnetic field dependence (see Fig. 2.4). These
CF are reproducible in subsequent field sweeps as long as the sample has not been
warmed and the impurity configuration has not been shifted. However, because
the path integrals which determine the phase are necessarily limited to trajectories
li < lϕ, the CF magnitude is reduced for voltage probe separations much greater
than lϕ [15].

Although WL is destroyed relatively easily by a magnetic field, CF can persist
to very high fields since it is due to differences in phase rather than time-reversal
symmetry. Because of this, it is a very good candidate for verifying mesoscale phase
coherence in ferromagnetic metals. Just as in WL, it may be necessary to constrain
the dimensions to less than lϕ and to apply the magnetic field longitudinally. We
have performed these measurements in submicron Ni ellipses [35] and will present
that work in Chapter 5 as additional tentative evidence for ferromagnetic quantum
transport. Keeping this in mind we present the equations which follow for later
use.

We characterize the CF by a correlation field Bc,CF which describes the mean
field spacing between fluctuations. Describing the correlation function for the nor-
malized conductivity g,

F (∆E,∆B) =< g(E,B)g(E + ∆E,B + ∆B) > − < g(E,B) >2, (2.16)

we define Bc,CF at the full width at half maximum, F (Bc,CF ) = F (0)/2. This
correlation field has a similar dependence on the area enclosed by a maximal phase
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Figure 2.4: Typical magnetoconductance fluctuations in a 1D Au wire (310 nm
long, 25 nm wide) at T =10 mK. (Figure taken from Ref. [2])

coherent area (Eqn. 2.15), with the exception that relevant enclosed flux is the
single electron flux quantum 2Φ0 since the condition of time reversal invariance
has been relaxed and the mechanism relies on 2π phase shifts between trajectories
connecting r′ and r.

Experimental evidence?

To date there has been no clear evidence for phase coherent transport in a ferro-
magnet at length scales comparable to those attainable by conventional e-beam
lithography techniques and there are a precious few experiments which do attempt
to attack this problem directly [44, 45]. Aprili et al. [45] attempt to fit the lnT
temperature dependence of the conductance of very thin Ni films in the percolative
regime to a WL theory, while Kobayashi et al. [46] attempt a similar fit in homoge-
neous Ni films. Since both the WL and electron-electron interactions (EEI) have a
lnT dependence in 2D [3,16], it is possible that the low temperature dependence of
the conductance is really due to EEI effects rather than WL. This is the most likely
explanation since the internal magnetic field in bulk Ni should already suppress
the WL contribution.

Hong and Giordano [44] take a different approach and assert that the strong
magnetoresistance (MR) of long narrow Ni wires is a novel mesoscopic transport
effect (electron-magnon scattering), reminiscent of weak localization but orders of
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Figure 2.5: Disordered normal conductor connected to four reservoirs (µ1−4) via
perfect leads. A flux Φ is applied through the sample.

magnitude larger. However, this strong MR persisted at much higher temperatures,
demonstrating that the effect had little to do with phase coherent transport. In
fact, subsequent measurements by many groups [47–49] indicate that the MR seen
in Ref. [44] may be due to the well-understood AMR mechanism, assuming that
the magnetization distribution changes somewhat upon application of a field. This
simple assumption is an important one which will be of use in our own single
particle measurements (see Chapter 5) and has been utilized in measurements of
arrays of ferromagnetic wires [49] as well as in sub-100 nm electrodeposited Ni
wires [50,51].

2.2 Electrical probe symmetries

In four terminal mesoscopic devices the measurement probes can be an integral part
of a device contributing asymmetric components to the MR [52] and affecting the
magnitude of the WL and CF contributions [53]. The asymmetric contributions are
essentially Hall-type contributions which can arise since it is very difficult to sample
only the diagonal components of the resistivity tensor when the probe widths are
on the order of the sample size [52]— a situation which is particularly common in
very short mesoscopic samples.

The question of whether quantum transport effects such as Aharonov-Bohm
(AB) oscillations in rings and CF was of particular interest in mesoscopic physics
and it was not until 1988 that Büttiker outlined the basic reciprocity relations for
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4-terminal measurements in a magnetic field [54]. Starting from a simple Landauer-
like picture of electronic transmission between reservoirs µ1−4 (see Figure 2.5),
Büttiker derived a reciprocity relation between different probe configurations as a
function of field,

Rij,kl(H) = Rkl,ij(−H). (2.17)

Here, the notation Rij,kl denotes a four-terminal resistance where i and j denote
the I+ and I− current leads while k and l denote the V+ and V− leads.

Since we will be dealing with ferromagnetic devices we will primarily be inter-
ested in a further generalization of Eqn. 2.17 to conductors with a magnetization
M ,

Rij,kl(H,M) = Rkl,ij(−H,−M). (2.18)

These relations are completely general (in the linear response regime) and were
found to be valid even for CF and AB oscillations in a dramatic experiment by
Benoit et al. [52] in Au and Ag rings, stressing the validity of these symmetries in
phase-coherent phenomena.

In practice, these reciprocity relations allow us to identify spurious Hall-type
contributions in our single ferromagnetic particle measurements by simply switch-
ing probe current and voltage probes [35]. We will return to this point in Chapter 5.

2.3 Summary

As we can see, the sources for magnetic field dependence in the resistivity are nu-
merous, and the above review can by no means encompass them all. Instead, it
informs us of the need to be vigilant in our physical interpretation, especially when
it comes to verifying quantum transport phenomena which have notoriously weak
contributions with respect to less exotic mechanisms such as AMR. The impor-
tance of this cannot be stressed enough and many recent experiments in domain
wall scattering in mesoscale devices [25–28, 55–59] may alternately be understood
in terms of AMR contributions with modifications in the analysis of current and
magnetization distributions at the submicron scale. As an example of these consid-
erations we have worked out an alternate explanation for one of these experiments
(Taniyama, et al. [58]) which is included as Appendix A.



Chapter 3

FERROMAGNETIC/SUPERCONDUCTOR
TRANSPORT:

EXPERIMENTAL BACKGROUND AND THEORY

When a nonmagnetic normal metal (N) is in good contact with a superconduc-
tor (S), the resulting resistivity in N can be greatly modified due to the “leakage” of
Cooper pair correlations from S. This is most simply understood in the Ginsburg-
Landau (GL) theory [60] as a finite amplitude of the order parameter in N which
decays over a length scale ξN , the normal metal coherence length.1 In terms of
the microscopic theory, this leakage of pair correlations was first described by An-
dreev [62] as the ability of electrons with sub-gap energies to penetrate into S by
generating a retroreflected hole of opposite momentum. In this manner, two elec-
trons could be transmitted into S to form a Cooper pair. This process is termed
Andreev reflection and is the basic mechanism behind the so-called “proximity
effect.”

The energy scale governing the extent of this effect in a diffusive metal is the
simply the thermal energy kBT through the normal (dirty) metal coherence length

ξN,dirty = lT = (h̄D/kBT )
1
2 [61]. Intuitively we understand the conduction electrons

to be confined to a bandwidth ∼ kBT of the Fermi energy, so this length would
correspond to the maximum length over which an electron can diffuse while keeping
its energy correlated to within this bandwidth. It turns out that this length can be
on the order of a micron at low temperatures (T < 1 K), which makes the study
of NS devices relevant to the mesoscopic regime.

In the past ten years, many groups have studied hybrid mesoscopic NS het-
erostructures and found a variety of surprising effects. Of these, the two most
well-known are the reentrant proximity effect and Andreev interference. The reen-
trant proximity effect is named after the nonmonotonic temperature dependent
behavior seen in the resistance of normal metal wires in contact with a supercon-
ductor. Such devices show a supression of the resistance as the temperature drops

1The GL interpretation of the proximity effect was first pointed out by de Gennes [61].

20
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below the superconducting transition, but below a characteristic temperature this
resistance begins to rise towards (or “re-enter”) its normal state value [63]. The
temperature at which the conductance maximum occurs is 5εc/kB where εc is the
“Thouless energy” or correlation energy h̄D/L2 for a sample of length L. Similar
reentrance behavior is also seen in the differential resistance at similar energies,
although Joule heating at the necessary current bias sometimes makes these mea-
surements difficult to interpret. Coexisting with the reentrance is a coupling of the
phase of the N electrons to the macroscopic superconducting phase, through the
Andreev reflection process. This phase sensitivity has been observed in a variety
of NS loop structures (or so-called Andreev interferometers) [63–67] which show
oscillations as a function of applied magnetic field.

We could continue to discuss the enormous body of work that has been done in
studying proximity NS devices, but for this thesis we are more concerned with the
possibility of a similar proximity effect in ferromagnet/superconductor (FS) de-
vices. Recently, Petrashov et al. [6] have reported “giant mutual” proximity effects
in Al/Ni structures, while Giroud et al. [9] observed reentrance in the resistance
of a Al/Co system. Measurements by Lawrence and Giordano [8] in (In/Pb)/Ni
systems also showed a large temperature and field dependence. All of these ob-
servations run counter to expectations of a very short length scale based on the
decoherence of the pair correlations by the strong exchange field present2 in fer-
romagnetic metals (estimates for this length range from ∼2 nm in Co to ∼20 nm
in Ni). Petrashov et al. estimate a proximity effect extending a length of almost
a micron into their Ni structures [6] while Giroud et al. estimate a length scale of
∼200 nm [9]. The discrepancy with the theory is currently unresolved, although
a recent publication by Belzig et al. [11] suggest that the effects seen in the Pe-
trashov and Giroud experiments can be explained by spin-accumulation at the FS
interfaces without invoking any proximity effect. With the exception of the Giroud
experiment,3 all of the measurements mentioned above included the FS interface

2Although this expectation is usually glossed over, it is not necessarily obvious that the relevant
field is the internal field Bint = (1−D)4πM . A general way to consider the problem is to notice
that the spin-splitting of the electron populations as they are transported from the superconductor
to the ferromagnet must increase (and decrease) the spin-up (spin-down) electron energies by the
exchange energy, i.e. the exchange field [68]. One can then define an energy correlation length
lex = (h̄D/εex)

1
2 over which electrons will diverge in energies; this splitting of spin-up/down

electron energies has the effect of destroying superconducting correlations, hence its relevance for
a proximity effect in ferromagnetic metals.

3The Giroud experiment [9] measured the resistance of a 50 nm thick Co ring with a 100 nm
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in series. This aspect will be central to the interpretation of our own experiments
(Chapter 6) and for this reason we will focus on the transport properties of NS and
FS interfaces in this chapter.

3.1 The Blonder-Tinkham-Klapwijk model for normal/superconductor
transport

Blonder, Tinkham and Klapwijk (BTK) [69] treated the one dimensional problem of
transport at a NS point contact by solving the Bogoliubov-de Gennes equations [61]
connecting quasiparticle currents between the N and S metals. While their method
allowed one to calculate many transport dependences in a straightforward manner,
it also cast the problem in an intuitive form which accounted for Andreev reflection
processes which enhance the NS interface conductance. In what follows, we shall
only outline the general results, developing a qualitative feel for the theory of NS
transport which we can translate to the FS case.

In the BTK theory the NS barrier is characterized by a delta function potential
V (x) = Hδ(x), with the barrier height usually referred to by its dimensionless form
Z = H/h̄vF . Following a quasiparticle description for the charge carriers, BTK
derived transmission and reflection coefficients for all possible charge transfer pro-
cesses at this interface for energies both above and below the gap. These processes
are pictured schematically in Figure 3.1 and the resulting coefficients are listed in
Table 3.1.

The processes shown in Fig. 3.1 give the probabilities of Andreev reflection
(A), normal reflection (B) and transmission as a quasiparticle with and without
branch crossing (C,D).4 Physically, we can break up the transport into energies
above and below the gap energy ∆ and examine the transmission properties as a
function of the barrier height. Figure 3.2 shows a plot of the coefficients, A and B

thick Al strip across one (or both) of the probes leading to the ring. While they found a strong
temperature dependence in the FS junction by itself, a measurement of the ring showed reentrant
behavior similar to the NS case. Unlike the Petrashov experiment [6], the FS interface is included
in parallel in that (Giroud) measurement.

4The “branch crossing” referred to in the text (and in the original BTK paper [69]) corresponds
to the four-fold degeneracy in possible momenta for quasiparticle energies Ek > ∆. However,
when transmitting into a quasiparticle state (from N to S), the quasiparticle group velocity
dEk/dk should remain directed into S, i.e., positive. The only two points which correspond with
such a principle are C and D as shown in Fig. 3.1.
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Figure 3.1: Charge transfer processes considered in the Blonder-Tinkham-Klapwijk
model for NS transport. The schematic shows the energy vs. momentum plots on
both sides of the NS interface. A normal electron incident at (0) will have four
possible interactions with the interface. It may be (A) Andreev reflected as a
hole (with branch crossing) (transmitted), (B) reflected, (C) transmitted without
branch crossing and (D) transmitted with branch crossing. (Figure taken from
Ref. [70].)
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BTK coefficients A B C D

Normal state 0 Z2

1+Z2
1

1+Z2 0

General form

E < ∆ ∆2

E2+(∆2−E2)(1+2Z2)2
1-A 0 0

E > ∆ 1
4γ2

(
1 − 1

N2
s

)
Z2(1+Z2)

N2
s γ2

(
Ns+1
N2

s

) (
1+Z2

2γ2

) (
Ns−1
N2

s

) (
Z2

2γ2

)

Table 3.1: BTK transport coefficients. The coefficients A–D correspond to the
probabilities of the processes shown schematically in Fig. 3.1. In the original BTK
paper [69] these coefficients were expressed in terms of the BCS coherence fac-
tors, u0 and v0, which gives a slightly more compact form. Here we prefer to
express the coefficients in terms of the quasiparticle density of states Ns, the su-
perconducting gap energy ∆ and the dimensionless barrier height Z since these
can be incorporated into our numerical simulations in a more transparent manner.
(γ2 = (Ns + 1 + 2Z2)2/4N2

s .)

as a function of energy (normalized to the gap energy).5 When there is a perfect
interface (Z = 0), the current has a unit probability of transmitting from N to S at
E < ∆. However, this mode of transmission is quickly attenuated at E > ∆ as the
probability of transmission as a quasiparticle (without branch crossing) begins to
increase with the energy. As the barrier is raised slightly (Z = 0.3), a fraction of
the electrons incident on S begin to be normally reflected. Intuitively, this reflected
fraction B gets larger as the barrier is raised, until Z→∞ (the tunnel limit) and
100% of the incident electrons are reflected. In this limit, A then approaches a
delta function-like behavior in E, reflecting the underlying quasiparticle density of
states.

3.1.1 The BTK differential conductance

From the BTK coefficients we can now calculate the total transmission coefficients,
giving an expression for the current. BTK did this, yielding the expression for the

5For clarity we restrict the schematic to the coefficients A and B since current conservation
demands A + B + C + D = 1 and we are not necessarily concerned with the specifics of the
transmitted probabilities C and D at the moment.
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Figure 3.2: Numerical calculations (by the author) of the energy dependence of
the BTK coefficients A (solid) and B (dashed).
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total current through the NS interface under an applied voltage V ,

INS ∝
∫ +∞

−∞
[f0(β,E − eV ) − f0(β,E)][1 + A(E) −B(E)]dE, (3.1)

where f0(β,E) is the Fermi function at a temperature T = 1/kBβ.
In the lab, all of our measurements will be either differential resistance or con-

ductance, so it is practical at this point to introduce the differential conductance
g(E) = (dI/dV )Rnormal (i.e., normalized to the normal state value) by differenti-
ating Eqn. 3.1 by the voltage V ,

gNS(V ) = (1 + Z2)

∫ +∞

−∞
κ(β,E − eV )[1 + A(E) −B(E)]dE. (3.2)

Here we have denoted the derivative of the Fermi function by

κ(β,E) =
β exp[βE]

(1 + exp[βE])2
. (3.3)

This is a function peaked about E = 0 with a width of ∼3.5kBT , incorporating
the temperature dependence into the integral. It is trivial to derive the zero tem-
perature conductance at this point since κ(E) reduces to a delta function at T = 0
and

gNS(V )|T=0 = (1 + Z2)[1 + A(E) −B(E)]. (3.4)

One can now see that the case of a perfect barrier (Z = 0) corresponds to a
doubling of the normal state conductance gns(E < ∆) = 2 at T = 0 (since A = 1
and B = 0) reflecting the double-charge transfer of the Andreev process. This con-
ductance then decreases to zero in the tunnel limit (Z→∞) as all incident electrons
are reflected and Andreev transmission is suppressed. In Fig. 3.3 we demonstrate
this by numerically integrating Eqn. 3.2 for a model (normal metal)/Al system
(T = 0.3 K, Tc = 1.4 K). Already, at Z = 10, gNS(V ) approaches that of the
tunnelling case [71] which is what we expect.

3.1.2 The temperature dependence gNS(V = 0, T )

While the above derivation outlines the voltage dependence of the differential con-
ductance, it is also useful to write down the expression for the conductance itself.
This quantity is simply the zero-bias value of Eqn. 3.2, gNS(V = 0). Sensitivity
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Figure 3.3: Numerical calculations of the normalized differential conductance gNS

at T = 0.3 K for various Z values. We assume a model (normal metal)/Al system
(T = 0.3 K, Tc = 1.4 K) with Z stepped in increments of 0.1 (solid traces). The
dotted trace shows the BTK model approaching the tunnel limit at a Z = 10.
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to other parameters such as the magnetic field or the temperature are then in-
corporated into this quantity through the BTK coefficients which are functionally
dependent on the gap ∆(H,T ). Additionally, there is a contribution to the tem-
perature dependence from the Fermi function derivative κ(β,E) which has a width
that is approximately linear in T .

The barrier parameter and reentrant behavior

As we noted previously, reentrant behavior in the temperature or energy bias is
often seen in mesoscopic NS devices and is considered a particular hallmark of the
proximity effect at that scale. While measurements which showed this behavior
did so without measuring the NS interface as part of the sample (see for example,
Ref. [63]), it should be realized that the BTK theory can reproduce this reentrant
behavior as well. In Figure 3.4 we show the temperature depence of the zero bias
conductance/resistance for Z = 0–1. In short, if one is measuring a NS (or FS)
interface in series with a device, the presence of reentrant behavior is not always
an indication of the proximity effect and should be verified independently of the
behavior of the interface.

3.1.3 Applicability of the BTK theory to diffusive systems

As satisfying as it is to be able to numerically calculate the BTK conductances and
still maintain a direct physical interpretation of the phenomenon at hand, it must
be realized that the theory was originally derived for NS point contacts where the
interfacial area is defined to be smaller than the mean free path. The implications
are that one can ignore scattering near the interface and that the electrons may
accelerate ballistically from the interface from a reservoir at equilbrium, i.e., all
of the potential drop occurs within a mean free path of the NS interface [69].
Later, it was learned that disorder in N could have dramatic effects since multiple
coherent scattering near the interface could enhance the Andreev probability of
transmission at subgap energies.6 In addition, for interfacial areas wider than the
mean free path, some sort of weighted average appropriate to the diffusive regime
must be performed over the available transmission eigenvalues [13], resulting in a
zero temperature conductance gNS = 1, half the point-contact result. In short, the
above complications can result in a messy analysis for many practical problems.

6For examples, see the original work of Klapwijk [72, 73] in semiconductor/superconductor
structures.
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However, this has not stopped many experimentalists from incorporating the BTK
theory as a qualitative tool [74,75] in understanding the physics. It is in this spirit
that we will approach our own data in Chapter 6.

3.2 Ferromagnet/Superconductor transport

In our experimental study of FS structures we will want to determine what as-
pects of spin-polarized transport will be important in our measurements. The
main difference we will find between NS and FS transport is the existence of a
finite spin-polarization of the ferromagnetic conduction electrons which can have
a considerable effect on the BTK picture outlined above. Before we touch on this,
it is useful to discuss some of the first thin-film FS experiments and what we can
learn from them about spin-polarized transport.

3.2.1 FS tunnel barriers and the polarization

In the early 1970s, Tedrow and Meservey [76–78] demonstrated that the tunnel-
ing spectrum between ferromagnetic and a superconducting thin films showed an
asymmetric split-peak structure upon application of a strong magnetic field (see
Figure 3.5). They realized that this was a direct consequence of the imbalance
between majority and minority spin populations and subsequently were able to
derive the spin-polarization from the differential conductance. The following key
facts made this observation possible:

• In some thin superconducting films, with a parallel applied field, the quasi-
particle density of states

Ns(E) =

[
E2

(E2 − ∆2)

] 1
2

, (3.5)

Zeeman splits evenly into spin-up and spin-down contributions upon appli-
cation of a magnetic field, Ns,↑↓(E,H) = Ns(E±µBH)/2 (see Figure 3.6(a)).
Experimentally, this was first observed by Meservey et al. [79] in thin Al
films.

• The majority and minority spin bands (defined as parallel and antiparallel to
the internal magnetization M) are unevenly populated such that the separate



31

Figure 3.5: Tunnelling spectrum for an Al/Al2O3/Ni junction for several magnetic
fields (in Tesla). (Figure taken from Ref. [78].)

spin populations can be represented as fractions of the total electron number,
Nf,↑ = aNf and Nf,↓ = (1 − a)Nf , with a net polarization

P =
Nf,↑ −Nf,↓
Nf,↑ +Nf,↓

= (2a− 1). (3.6)

It is known that the differential tunnel conductance between a normal metal and
a superconductor essentially maps the (thermally smeared) quasiparticle density
of states [71] through a conductance equation very similar to Eqn. 3.2,7

gNS,tunnel =

∫ +∞

−∞
Ns(E + eV )κ(β,E − eV )dE. (3.7)

To derive the Tedrow and Meservey result, we split this differential conductance
into its constituent spin up and spin down components, weighting the transmission

7In fact, Eqn. 3.2 reduces to Eqn. 3.7 in the high Z limit as verified by the limiting forms of
the BTK coefficients A and B.
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butions, but (b) the effective density of states will be weighted by the polarization
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tunnel conductance (Eqn. 3.8).
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into each of the Ns,↑↓ by their respective population fractions a and (1 − a),

gFS,TM =

∫ +∞

−∞
[aNs,↑(E,H) + (1 − a)Ns,↓(E,H)]κ(β,E − eV )dE

=

∫ +∞

−∞
[aNs(E + µBH) + (1 − a)Ns(E − µBH)]κ(β,E − eV )dE.(3.8)

These equations are easily numerically integrated and the results of such a proce-
dure are shown in Figure 3.7(a). The calculation is performed assuming T = 0.3 K,
a spin polarization P = 0.23 (corresponding to Ni [78]) and an applied magnetic
field H = 1 T, with the other critical parameters as noted in the figure. Although
the field is quite high, splitting the peaks by over 100 µV, thermal fluctuations at
this temperature smooth out these features considerably, making the peaks difficult
to discern. The original scheme that Tedrow and Meservey used to deduce the po-
larization involved the determination of all four of the individual peak heights [78]
which required extremely large fields. In addition, the field requirements forced the
use of very thin Al films to maximize the in-plane critical field, which further ne-
cessitated painstaking alignment in setting up the measurement, the critical point
being that the Zeeman splitting should exceed the thermal energy by as large a
factor as possible. It is apparent from the numerical example shown that at more
reasonable fields and temperatures, it is difficult to discern these peaks precisely.
The corresponding peaks in Ns (coplotted with this figure) underline the effect of
thermal smearing on the apparent heights and positions of the differential conduc-
tance peaks. In this sense, the determination of the polarization can be somewhat
difficult. However, a possible method for discerning the polarization may be to
simply seek out the more distinct antisymmetric component. As an example, we
have plotted the antisymmetric components of both gFN and its corresponding
Ns(E) for comparison in Fig. 3.7(b). To accentuate the potential for discerning
the polarization in less stringent conditions, we repeat the example for a much
smaller field of H = 0.1 T in Figure 3.8. Even though the Zeeman splitting is
minimal here (∼10.6 µV), the antisymmetric component (Fig. 3.8(b)) still reveals
structure that could otherwise have been ignored.

Qualitatively, the importance of the antisymmetric component is quite clear—
first, its existence signifies the existence of spin-polarized transport from F into
S, second, its shape determines the sign of the polarization, and third, it offers a
potential method of studying spin transport in low-fields where the spin splitting
may not be distinct to within the thermal bandwidth. However, one should be
careful, in such an analysis, to distinguish other antisymmetric contributions such
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as the thermopower which can be considerable in NS structures with nonuniform
heating.8

In our work, we will be interested not only in how the superconductivity re-
stricts conduction channels through a FS junction, but also how local magnetic
fields may affect the measurement. Here, we suggest that the presence of an an-
tisymmetry in the differential resistance/conductance, even with no applied field,
may be indicative not only of spin-polarized current, but also of a Zeeman splitting
in Ns which can be due to fields generated by F.

3.2.2 Adapting the BTK theory for FS systems

Some authors have already noted that Andreev reflection should limit the conduc-
tion in FS structures since the unbalanced fraction P of the total electron number
cannot combine to form Cooper pairs [82–85]. Experimentalists have taken ad-
vantage of this, measuring the spin-polarization using point contact geometries in
zero applied magnetic field [83–85], assuming nearly perfect contacts, and fitting
the differential conductance for cases when these assumptions are relaxed. In a
perfect FS contact (Z = 0) then the current will only be conducted by a frac-
tion (1 − P ) which can Andreev reflect. This gives the zero bias conductance,
gFS|Z=0 = 2(1 − P ) (normalized to the normal state conductance). This gives the
understandable result that the conductance should vanish at 100% polarization
since there will be no paired spins available to Andreev reflect. However, the po-
larization estimates based on this reasoning always seem to be a bit higher than
the accepted numbers found by tunneling, and these discrepancies are not yet com-
pletely understood [85]. In addition, the two techniques used so far, mechanical
point contacts [83, 84] and thin film nanocontacts [85], disagree greatly for some
ferromagnet polarizations. In any case, this prescription is physically transparent
and may be adapted to other measurements such as the temperature dependence
of the zero-bias conductance/resistance in a straightforward manner.

For later comparison with our data, we have adapted the BTK model, ac-
counting for the attenuation of the Andreev coefficient with the substitution A→
(1−P )A, and weighting the different spin-subchannels by the spin fractions a and
1 − a as in the tunneling case shown previously.9 Results of such a calculation

8An example of NS thermopower (and its phase dependence) can be found in earlier work by
our group by J. Eom et al. [80, 81].

9A more detailed calculation along these lines has recently been published by Mélin [12].
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are shown in Figure 3.9 for the same parameters as Figs. 3.7 and 3.8 except that
we have varied the Z values slightly to show the evolution of the antisymmetric
component. It comes as no surprise that the antisymmetry of the spin-channel
transmission is also revealed in the case of an arbitrary barrier height, but in the
metallic contact limit (Z = 0), the component seems to switch sign. This occurs
because the weighted peaks in NS at eV = −∆ + µBH and +∆ − µBH can not
be distinguished from the flat region between the peaks where the transport is
dominated by Andreev reflection. Therefore the only peaks in NS available to
give antisymmetric components are the “outside” peaks at eV = −∆ − µBH and
∆+µBH, hence the apparent sign switch is really a lack of weighted peak structure
from the “inside” peaks.

3.2.3 Other theories

Our approach to FS transport has been limited to only BTK-type transmission
here. We have ignored nonequilibrium spin and charge imbalance effects far from
the interface largely because they have only marginal relevance to the experimental
results discussed in this thesis (Chapter 6). However, even dismissing the possibil-
ity of a mesoscale proximity effect in typical transition metal ferromagnets, spin-
accumulation and charge-imbalance may both play significant roles as nonequi-
librium transport phenomena. Spin-accumulation has recently been discussed by
Belzig et al. [11] as a possible candidate for many of curious results presented in the
experiments so far [6,9]. The central concept is that a spin-accumulation must oc-
cur at the interface in F due to a theorized short quasiparticle spin-diffusion length
in S. This buildup of nonequilibrium spin should result in an increase in resistance
below the superconducting transtion [10]. The results of Belzig’s theory seem to
account for almost all of the qualitative features of the results in Refs. [6,9], taking
into consideration the geometries of their interfaces. We note that the theoretical
approach in Ref. [11] is contained in a more appropriate general framework, with
the ability to analyze ballistic, diffusive and dirty FS interfaces, yet it is certainly
an order of magnititude more difficult than the BTK approach shown here. We
should also remember that although the BTK approach reveals much of the qual-
itative physics behind NS and FS interfaces, it is still presented here as a model
restricted by point-contact assumptions [69] and should always be regarded under
this caveat.
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Chapter 4

EXPERIMENTAL TECHNIQUES

To complete the experiments described in this thesis it was necessary to employ
a number of established lithographic, cryogenic and measurement techniques. In
this chapter, we will discuss general methods, ranging from nanolithography to
cryogenics, as well the specific considerations made for micromagnetic transport.

Much of the equipment and many of the techniques that were used to complete
the experiments described in this thesis were built and perfected by two previous
graduate students in our group, Chen-Jung Chien and Jonghwa Eom and are de-
scribed in their respective theses [81, 86]. When possible, we will refer to these
works for specific details since much of the methodology is identical and, instead,
concentrate on this author’s contributions and improvements/modifications to our
existing technical base.

4.1 Device fabrication

The devices described in this thesis are patterned by standard bilayer e-beam
lithography techniques onto an oxidized Si wafer. Contact to the devices is made
via large area photolithographically patterned Ti/Au pads. The devices themselves
are comprised of metal (Ni, Au, Al) thin films evaporated using an e-gun evaporator
of the author’s construction. Since all of our devices are comprised of multiple metal
layers, it is not uncommon for a device to be subjected to five lithography cycles
(including photolithography). For this reason, it is important that all processes are
optimized for yield and many of the processes outlined below are the result of much
trial and error. All wafer and resist processing takes place in a class 1000 clean
room to help eliminate lithography problems due to airborne particulate matter.

39
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4.1.1 Wafer preparation

The substrates utilized in this study are 0.020′′ thick Si (100) wafers oxidized by
the supplier.1 Prior to any lithography, a new batch of wafers is analyzed by atomic
force microscopy to ensure a roughness of less than 50 Å. This is important since
our films are on the order of only a few hundred Å.

We clean the surface prior to the coating of any resists since any particulate mat-
ter or unwanted chemical contaminants can render our lithography efforts pointless.
After dicing the substrates to suitable dimensions, we clean the substrates succes-
sively in methanol, acetone and isopropyl ultrasonic baths. The ultrasonic baths
eliminate residual Si particles from the dicing process, dissolve any salt contam-
inants, and degrease the surface. The samples are then blown dry with N2 gas
immediately upon withdrawal from the isopropyl bath and placed in a covered
container until resist coating.

4.1.2 Photolithography

The measurement of submicron metal structures necessitates the presence of large
metal pads to which we can wirebond, connecting the devices to the outside world.
While e-beam lithography is suitable for patterning both the fine structures and
the larger contact pads, it is often preferable to pattern the large contact pads
using photolithography since one can fabricate many of these large area patterns
simultaneously.

For the patterning of the large area contact pads we use the following steps (see
Figure 4.1):

1. Coat. Spincoat wafer with S1813 photoresist2 at 6000 RPM for 90 s to yield
a ∼1.1 µm thick coating. Resist is dropped onto substrate prior to starting
spinner.

2. Bake. Bake substrate in a convection oven at 90◦C for 30 min, driving out
the solvent. This is usually called the “soft bake.”

3. Exposure. Expose the substrate in a Quintel Q-20001CT mask aligner3 using

1Polishing Corporation of America, Santa Clara, CA
2produced by Shipley, Marlborough, MA, but distributed by MicroChem Corp., Newton, MA
3Quintel Corp., San Jose, CA
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a Cr on quartz photomask4 with a UV exposure time of 10-20 s (dependent
upon the condition of the lamp).

4. Development. Develop the patterns by immersing the substrate in Microposit
MF-319 developer solution5 for 30 s at room temperature. The substrate is
withdrawn from the solution while rinsing the surface with deionized water
and blown dry with N2 gas.

5. Metallization. Deposit 25 Å Ti (4N5) (for adhesion) and 225 Å Au (3N5) by
e-gun deposition at 1–5×10−7 Torr.

6. Liftoff. Soak in room temperature acetone for at least 10 min to dissolve
photoresist and remove unpatterned metal coating.

Usually, it is customary to harden the top surface of the photoresist using
a chlorobenzene soak [81], giving an undercut profile which improves liftoff [81].
However, this yields inconsistent results with our devices. More often than not,
the Ti/Au metal layers creep onto the sidewalls, giving a ragged edge (or crown)
upon liftoff which can be detrimental when trying to deposit connecting probes
(see Figure 4.2). We circumvent this problem by soaking the large area patterns in
an ultrasonic acetone bath for 1–2 hrs at room temperature. Since the Ti adheres
so well to the substrate the patterns always remain stuck to the substrate while
the ragged edges are broken off, providing clean 300 Å step edges (see Figure 4.3).

4.1.3 E-Beam lithography

After suitable large area contact pads have been prepared by photolithography and
metal deposition, we follow a similar series of steps to write our submicron patterns
with e-beam lithography. We use a resist bilayer which provides an excellent un-
dercut profile and has been found to improve liftoff properties in many mesoscale
devices [87].

4The photomask was designed by the author and produced by Align-Rite Corp., Burbank,
CA.

5produced by Shipley, Marlborough, MA, but distributed by MicroChem Corp., Newton, MA
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(a) (b)

SiOx/Si

metal 

SiOx/Si

metal 

2nd metal layer 2nd metal layer

Figure 4.2: Schematic view of contact between a second metal layer and (a) clean
edges of a photolithographed Ti/Au layer and noncontact to (b) ragged edges left
by inadequate undercut.
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(a)

(b)

(c)

Figure 4.3: Scanning electron micrographs of (a) ragged Ti/Au large area pattern,
(b) closeup of ragged Ti/Au probe before ultrasonic treatment and (c) after 70
min in ultrasonic acetone bath. In (c) we see a large part of the ragged flap on the
left hand side has been shaken off, leaving a clean Ti/Au step which can easily be
contacted to in subsequent depositions.
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1. Coat. Spincoat wafer with NANOTM100 PMMA A4 resist6 at 3000 RPM for
45 s, yielding a ∼100 nm layer thickness. Resist is dropped onto the substrate
within a second of starting the spinner to ensure an even coating.

2. Bake. Bake in a convection oven at 180◦C for 1 hr. Allow to cool at room
temperature for at least 15 min, then . . .

3. Coat again. Spincoat NANOTM495 PMMA A4 resist7 at 8000 RPM for 45 s,
yielding a ∼100 nm layer thickness. The resist is dropped onto the substrate
while spinning (as in Step 1), minimizing the dissolution of the first PMMA
layer by the solvent in the second.

4. Bake. Bake in a convection oven at 180◦C for 1 hr. Allow to cool to room
temperature.

5. Exposure. Expose fine patterns in JEOL JXA-8408 scanning electron micro-
scope using an electron beam.

6. Development. Develop patterns by immersing wafer in a 1:3 methyl isobutyl
ketone (MIBK)/isopropyl alcohol(IPA) solution at 23◦ for 45 s. The surface
is rinsed with isopropyl alcohol as the wafer is withdrawn from the solution
and then blown dry with N2 gas.

E-beam notes (and the art of fine alignment)

The actual patterning is performed using a JEOL JXA-840 scanning electron micro-
scope, with the beam directed by a Windows program developed by Prof. V. Chan-
drasekhar. The PC is connected via a D/A card9 and an external x-y beam control
module supplied by JEOL [86]. A typical exposure is performed with a charge
dosage of 400 µC/cm2, at magnifications of 1000–8500×. In practice the dosage

6100K molecular weight polymethyl methacrylate dissolved in anisole, MicroChem Corp.,
Newton, MA

7495K molecular weight polymethyl methacrylate dissolved in anisole, MicroChem Corp.,
Newton, MA

8JEOL, Boston, MA
9Microstar Laboratories, Inc., Bellevue, WA
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Figure 4.4: Schematic view of e-beam lithography process (see text).
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must be tuned for various patterns due to proximity exposure effects, while the
magnification is chosen to minimize the total possible exposure field with respect
to the device dimensions. In addition, the sample is brought as close to the beam
aperture as possible. This increases the resolution by bringing the sample closer
to the objective lens and also minimizes the beam path length (thereby reducing
the effects of external vibration and electrical noise which can shift the beam).

In fabricating these devices, the most difficult part of the process is the align-
ment. All of the devices presented are comprised of two or more metallic layers
which must be aligned to within 50-100 nm. This can be tricky since there are a
number of ways the sample alignment may shift due to many sources of image shift
in the JXA-840 SEM. If a sample is fabricated from three different layers requiring
fine alignment (as in our normal/ferromagnet/superconductor devices), mistakes
in alignment can reduce the final yield by a substantial amount which can make
the entire process very frustrating. Over the years we have developed an align-
ment system appropriate to our SEM and patterning program. This procedure is
somewhat detailed and specific to our setup and for this reason, we do not include
it here.

4.1.4 E-Gun deposition

All metal deposition took place in a diffusion-pumped e-gun evaporator of the
author’s design (see Figure 4.5).

The main chamber (or “service well”) was designed in AutoCAD10 and sub-
mitted to an outside manufacturer11 for construction. The chamber is constructed
from nonmagnetic 304 stainless steel with a number of ports that can be outfitted
with an assortment of mechanical, cooling line and electrical feedthroughs, while a
large surface is provided at the top to seal with an 18′′ quartz bell jar.

The chamber is pumped by a six-inch (ASA 6) diffusion pump12 backed by a
strong mechanical pump.13 To stop diffusion pump oil from backstreaming into
the chamber, we use a liquid nitrogen cold trap14 with a holding time of 10–17 hrs.

10Autodesk, Sausalito, CA
11HPS Division, MKS, Inc., Boulder, CO
12Varian VHS-6 diffusion pump, Varian, Lexington, MA. The pump used in our system is

actually refurbished by the author.
13Welch 1397, W. M. Welch Scientific Company, Chicago, IL
14Varian 362-6 cryotrap, Varian, Lexington, MA.
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The combined pumping stack is capable of pumping at 1100 ?/s, providing a rapid
turnaround time for many of our depositions.

Substrates are mounted ∼ 380 mm from an five-pocket 3 kW e-gun source15

which is powered by a 4 kV power supply.16 The deposition itself takes place once
the system pressure has fallen to ∼1–3×10−7 Torr. We mount the samples directly
over the source such that the source evaporant impinges the sample surface at
normal incidence. The sources are held in a water-cooled copper hearth which is
lined with a variety of crucible liners depending on the source material.17 Finally,
the film thickness is monitored using an quartz oscillator bridge.18

4.1.5 Plasma etching

dc O2 etching

Many metals have difficulty adhering to Si/SiOx surfaces and this condition is
sometimes exacerbated by the presence of PMMA residue. To avoid this difficulty
we perform a dc O2 plasma etch19 in a simple stainless steel chamber assembled
by the author from 2-3/4′′ UHV and KF-40 HV components20. The samples are
mounted on a grounded stainless steel plate, with a mirror electrode ∼3/4′′ away.
O2 glass is flowed through a needle valve/mechanical pump combination giving a
chamber pressure of ∼110 mTorr. The plasma is generated by an external power
supply generating a -700 V potential between the electrodes with a quartz tube
surrounding the electrodes to confine the plasma. The oxygen plasma has the effect
of reacting with organic residues on the substrate (such as PMMA residue) and
ionizing them such that they can be pumped away. In this configuration, we find
that a plasma etch time of 25 s etches away ∼200 Å of PMMA, which is suitable
for etching any PMMA residue without destroying the undercut profile. Using this
method, we find that Au adheres quite well to our Si/SiOx substrate in comparison

15Model 528-5 e-gun, TFI Telemark, Fremont, CA
16DEG 744, Denton Vacuum, Cherry Hill, NJ
17Ni (4N5) is deposited straight from the Cu hearth (or from a Cu liner), while Au (5N) is

deposited from W crucible liners and Al (5N) is deposited from intermetallic liners (TiB2-BN).
Crucible liners are obtained from Kamis, Inc., Mahopac Falls, NY.

18Model XTM/2 deposition monitor, Leybold Inficon, Inc., East Syracuse, NY
19This is sometimes called “plasma ashing” in the literature [88]
20Kurt J. Lesker Co., Clairton, PA
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Figure 4.5: Some of the original AutoCAD designs used to construct the e-gun
evaporation system.
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to nonetched substrates. We use this method whenever possible as it is the most
reliable way to eliminate residue and improve adhesion.

ac Ar+ etching

To measure our Ni particles, we require good electrical contact with the subse-
quently deposited Au and Al layers since these will serve as our transport probes.
To achieve this, it is necessary to clean the surface of the already deposited Ni,
improving contact to Au or Al layers deposited on top. We cannot use the oxygen
plasma procedure detailed above since the Ni is susceptible to oxidation. Instead,
we perform a very similar procedure, using Ar in an ac field, essentially sputtering
material off of the substrate. This has the advantage that it does not oxidize the
underlying Ni, although it may damage the surface somewhat if one is not cautious.
The etch parameters are very similar to the oxygen process, with the pressure and
time being identical, but with an applied 1 kHz ac field of ∼380–400 V rms.

4.2 Electrical transport measurements

4.2.1 Cryogenics

Many of the transport properties of interest to us are seen only at low temperatures
(e.g., quantum interference and superconductivity) so it is necessary to perform
our measurements using a low temperature cryostat. Most of the measurements
in this thesis are performed using a closed cycle 3He cryostat21 [89] capable of a
minimum temperature of 260 mK, although early measurements in single-particle
ferromagnetic transport were taken using a fixed impedance pumped 4He cryostat
(built by J. Eom) capable of a minimum temperature of ∼1.1 K. These cryostats
are loaded into a liquid He bath that provides ambient cooling through thermal
contact as well as a source of 4He for their respective 1K pots. Associated pumping
lines were constructed from PVC pipe by the author, with the corresponding pumps
located in a separate room on the floor below, which helped isolate the cryostat
from mechanical pump vibrations. The 4He dewar and cryostat system are situated
on a platform which is isolated from the surrounding floor, providing most of our
vibration isolation.

The samples are mounted on the end of a Cu cold finger which is weakly coupled
to either a 1K pot (pumped 4He system) or a 3He pot (closed cycle 3He system)

21Janis Research Company, Inc., Wilmington, MA
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with the entire assembly residing inside a cone-sealed brass vacuum can isolating
the sample from exchange gas heat leaks to the external 4He bath.

4.2.2 Temperature measurement and control

Temperature is measured using a calibrated RuO2 thin film surface mount resistor
potted in a small amount of epoxy22 which, in turn, is potted in thermal heat
sink compound23 in the Cu cold finger. The measurement itself is a four-probe
ac lock-in measurement which is performed by a custom bridge circuit designed
and built by J. Eom [81]. RuO2 is a Mott insulator and has a strong temperature
dependence at low temperatures, rising as it is cooled. Below 10 K, this resistance
is generally in the 1–10 kΩ range and care must be taken to avoid self-heating. To
this end, we use low excitation currents of 2–200 nA.

Temperature biasing is accomplished using a homemade proportional-integral-
differential (PID) feedback circuit [81, 86] which takes an error signal from the
thermometer bridge circuit and outputs to a heater situated opposite the resistance
thermometer on the cold finger. The PID parameters are sensitive to the setpoint
value and are determined by trial and error.

In temperature dependence studies we bypass the PID entirely and ramp the
voltage on the heater directly through a low-pass filter (to eliminate digital output
spikes) using a computer-controlled voltage source.24

4.2.3 Magnetic field control

Magnetic fields can be applied to our samples using conventional superconducting
magnet technology. However many of our magnetotransport measurements are
dependent upon the direction of the field and so it is desirable to have some system
for rotating this field. Since our samples are mounted with the surface normal
parallel to the cryostat, it is impossible to rotate the field in the substrate plane
with conventional superconducting solenoid designs. In our early single particle
measurements, we needed to apply the field in the substrate plane, so we mounted
the sample on a socket adapter (machined from Stycast 1266 epoxy) which brought

22Stycast 1266, Emerson and Cuming, Canton, MA
23DC 340, Dow Corning Corp., Midland, MI
24Keithley 230, Keithley Instruments, Inc., Cleveland, OH
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the substrate plane in-line with the solenoid axis.25 This solved only half the
problem since it was still impossible to rotate this field in the substrate plane very
easily. To remedy the situation, we purchased a two-axis superconducting magnet
system26 which had a 1.8 T split coil (which directs a field perpendicular to the
cryostat axis) and a 3 T solenoid (parallel to the cryostat axis). With the substrate
mounted conventionally, the split coil can apply a field in the substrate plane, while
the solenoid applies a field out-of-plane. Using this two-axis combination, we are
able to measure magnetotransport with the magnetic field applied in-plane as well
as out-of-plane. In order to rotate the field in-plane, we simply rotate the cryostat
about its axis, effectively rotating the sample with respect to the split-coil axis.

The magnets are powered using off-the-shelf high current power supplies (PS).
In practice, we have utilized three different PS systems: a 20 A bipolar supply,27

a 120 A bipolar superconducting magnet supply,28 and a pair of unipolar supplies
coupled together to give bipolar output.29

The unipolar supplies were operated using a circuit design due to A. Benoit
(then at IBM Watson Research Laboratory) for the HP 6260 series PS and was
constructed by the author (see Figure 4.6). The circuit shown in Fig. 4.6, operates
the magnets in voltage control mode, applying a constant voltage to the magnet
leads (using an computer controlled voltage source), giving a constant charging
rate. To get bipolar operation, a second unipolar supply is coupled to the first
with opposite polarity, with the control circuit attached solely to the first supply.

Each of these systems has their distinct advantages. The coupled unipolar PS
system is best suited for high current/high field voltage-biased magnet control,
while Kepco bipolar PS is suitable for low/medium field current bias control.

4.2.4 Data acquisition

The data acquisition is performed by a DOS-based Pascal program written by Prof.
V. Chandrasekhar and J. Eom. The program is GPIB-capable and was used to

25For early measurements we used a 6 T solenoid supplied by Kadel Engineering (Danville, IN)
26Cryomagnetics, Inc., Oak Ridge, TN
27Kepco BOP 20-20M, Kepco, Inc., Flushing, NY.
28Lakeshore 622, Lake Shore Cryotronics, Inc., Westerville, OH
29HP 6260B and HP 6388, Hewlett Packard, Cupertino, CA



53

Magnet Control Box 12/98

+

LCD

Do not need to ground
power cable. Using P33-T 597 
(Polytron Devices, Inc.)
Wire COM on transformer 
to PS –(GND)

PS internal

PS internal

coarse V

Figure 4.6: Magnet control circuit for use with HP 6260 series power supplies
(design due to A. Benoit). For bipolar operation, a second supply is coupled the
first with opposite polarity.



54

both monitor our multimeters30 and ramp temperature, magnet and bias voltage
with a programmable voltage source (Keithley 230).

4.2.5 Data lines

When extending the data lines from room temperature to low temperature the
primary concerns are thermal and RF noise isolation. The thermal isolation is
achieved using superconducting twisted pairs (NbTi in a CuNi matrix) which, at
low temperature, connect to Cu twisted pairs wound around the Cu cold finger.
The RF isolation is performed by a set of π-section filters at room temperature
and eliminates heating at the sample due to high frequency noise currents [81].

4.2.6 Wirebonding and device verification

Prior to wirebonding, we examine the devices using our SEM. This is to verify
that the sample is visually continuous and that there are no unwanted shorts. The
sample is then mounted on a custom thirty-two pin header using silver paint and
wirebonded using 0.001′′ Al wire (1% Si) in a wedge bonder.31 After the device is
bonded and the probes are annotated for future reference, we check the electrical
continuity by plugging the header into its corresponding socket on the cryostat
itself. This check is performed at room temperature with a battery-powered multi-
meter.32 If the sample is okay, we proceed to seal up the vacuum can and prepare
for cooldown. At this point, we can also perform room-temperature diagnostic
four-probe measurements to begin characterizing our devices.

4.2.7 ac lock-in techniques: R, dV/dI and dI/dV

To study electronic transport, we employed three basic ac measurements in this
study: zero- and finite-bias differential resistance (R, dV/dI) and differential con-
ductance (dI/dV ). The first two are four-probe measurements and are suitable
for low-resistance samples while the last is most useful for high resistance samples
which require a high dynamic range.

30HP 34401A, Hewlett Packard (now Agilent Technologies), Cupertino, CA
31Kulicke and Soffa 4123, Kulicke and Soffa, Inc., Willow Grove, PA
32Fluke 79, Fluke Corp., Everett, WA
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Resistance

The resistance is measured using a differential ac technique [38] with an Adler-
Jackson type bridge [90]. The bridges are decade resistors33 which we have modified
according to the circuit shown in Figure 4.7. The excitation current is generated
by an external voltage which is taken from our lock-in amplifier. This voltage
is isolated from the oscillator ground by an 1:1 isolation transformer and applied
across a set of extremely stable 1 MΩ resistors,34 providing a near-ideal current
source at the sample. The points “A” and “B” are attached to the differential input
of a PAR 116/116A which in turn sends the signal into a PAR 124/124A lock-in
amplifier35. The voltage VAB(≡ VA − VB) measured by the lock-in amplifer must
be phased with respect to the excitation current, since various inductances and
capacitances in the leads may generate an out-of-phase component. We can adjust
the phase to the resistive part of the signal by toggling decades in the balancing
bridge resistor and checking that the lock-in signal does not shift. This phase
angle is then the pure imaginary component and lies ±90◦ from the real (resistive)
component.

In general the excitation currents are chosen such that the voltage drop across
the sample is a fraction of kBT and there is minimal self-heating. Even with this
restriction, small signals can be well-resolved in this setup, with the main source of
noise arising from Johnson noise in the bridge’s decade resistor. For extremely small
signal changes (e.g., a few nanovolts) and small source impedances, it is preferable
to operate the PAR 116/116A in “transformer mode” which couples the A-B in-
puts to the preamplifier using a 1:100 audio transformer. In practice, our small
resistance samples (a few Ohms) and our lead lines provide a source impedance of
less than 100 Ω and the resulting gain is less than ten at 11.7 Hz. Although this
is not quite the ideal gain of one hundred, it is a considerable improvement over
“direct mode” and we have been able to achieve a signal resolution ∼0.5 nV rms
with reasonable time averaging intervals. We try to use the lowest excitation fre-
quencies possible in these measurements (especially transformer mode) since there
can be quite a lot of common mode drift in our longer runs (e.g., typically 8–12
hours for our high field single ferromagnetic magnetoresistances) and the common
mode rejection ratio of the PAR 116/116A tends to drop substantially at higher

33General Radio 1433-X and 1433F, General Radio Co., Concord, MA
34Vishay Resistive Systems Group, Malvern, PA
35Princeton Applied Research, Princeton, NJ
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frequencies. For this reason we use only excitation currents below 100 Hz and all
of the small signal measurements (i.e., conductance fluctuations) are measured at
11.7 Hz.

In samples where the lead line resistance may change substantially (such as
the superconducting leads in our ferromagnetic/superconductor devices), it is im-
portant to not use transformer mode in the PAR 116/116A since the gain can
be a strong function of the source impedance in our frequency regime. Ignoring
this aspect, one may observe spurious changes in the off-balance voltage VAB at
the superconducting transition as the gain shifts, even though there may be no
real change in the sample itself. For this reason, it is often advisable to the check
the gain and phase both above and below any superconducting transitions in the
system.

Differential resistance: dV/dI

The measurement described above is a differential measurement, except that it
essentially determines the resistance only at zero current bias. Therefore, all that is
necessary to measure the finite-bias differential resistance is to insert a current bias
at I+. We do this using a homemade voltage-to-current converter [81, 86], routing
the current through a 10 kΩ resistor so that it can be monitored (see Fig. 4.7). We
use a GPIB-compatible voltage synthesizer36 to source the converter so that the
current bias can be controlled by our data acquisition program as well as by front
panel controls. Using this setup we can ramp the current over ranges of microamps
to hundreds of microamps at frequencies as low as a microhertz. It should be
pointed out, however, that even a bias of a few microamps can heat mesoscopic
devices appreciably at low temperatures [91] and must always be considered when
analyzing these measurements.

Differential conductance: dI/dV

Conductance can be more practical to measure than the resistance in high-resistance
junction devices. As an example, tunnel junction interfaces between normal met-
als and superconductors may show a finite resistance above the superconducting
transition, yet approach infinity as the temperature approaches zero, making a
temperature dependence impossible to measure due to insufficient dynamic range
in the lock-in. Conversely, the conductance may be some finite value above the

36HP 3325A, Hewlett Packard, Cupertino, CA
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Figure 4.7: General ac resistance bridge measurement schematic. The input oscil-
lator voltage taken from the lock-in amplifier is fine-tuned with a voltage divider
inside the bridge box (not shown). The sample is represented by Rs and the decade
resistor by Rb. dV/dI measurements are easily configured by adding a dc current
at the I+ probe (shown in grey). The sample grounding may be placed at any of
the V±, I± probes for resistance measurements, but must be placed at I− for dV/dI
measurements.
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material ρl [10−6µΩ·cm2] vF [108 cm/s]
Ni 15.0 [92] ∼1.37 [93]
Au 8.45 [17] 1.40 [17]
Al 3.20 [94] 2.0 [17]

Table 4.1: Parameters used for calculating the diffusion constant D. The Fermi
velocity listed for Ni should only be considered an estimate since it is based on
the free electron model. Since Ni is a transition metal with hybridized sd bands
a more accurate value for vF is difficult to obtain. References for all numbers are
denoted in brackets.

transition and approach zero at low temperatures. The technique described below
is used only to measure our highest resistance FS samples (∼1 MΩ).

We measure the differential conductance (dI/dV ) by voltage-biasing the sample
(with both dc and ac voltages) using a 100 kΩ:10 Ω voltage divider and measur-
ing the resulting ac current response with an Ithaco 1211 current preamplifier37

(see Figure 4.8). The dc and ac voltages are supplied by the voltage synthesizer
(described above) and the lock-in amplifier’s oscillator and are summed prior to
biasing the divider. The current preamp signal is directed to a PAR 116/PAR
124 preamp/lock-in amplifier and is phased with respect to the excitation voltage
at the top of Rs. The differential conductance is then determined by the current
response divided by the excitation voltage. As in the dV/dI measurements, the
voltage bias may be ramped using the voltage synthesizer and, similarly, it is im-
portant to gauge the level of heating due to the applied voltage, especially since
the conductance may change by orders of magnitude in many measurements.

4.3 Sample characterization

4.3.1 Physical parameters

The devices in this study are all fabricated from films 300–600 Å thick with lateral
dimensions not smaller than 600 Å. Since the elastic mean free path l is much
smaller, we can consider electronic diffusion to be three dimensional in these sys-
tems, with a diffusion constant D = 1

3
vF l (where vF is the Fermi velocity of the

37Ithaco 1211, Ithaco, Inc., Ithaca, NY
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Ithaco
1211

to lock-in

Figure 4.8: Differential conductance measurement (dI/dV ). The sample Rs is
voltage biased with a 104:1 voltage divider, while the current through Rs is sent
through an Ithaco 1211 preamplifier which is connected to a lock-in amplifier.
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conduction electrons). D is a useful parameter in estimating various mesoscopic
lengths (lϕ, lT , etc.) since these all vary as ∼

√
D. In this work, we calculate

D using known values of ρl from the literature (see Table 4.1) with resistivity ρ
determined by the experimental sheet resistance (R✷ ≡ R(w/L)) and the relation
ρ[µΩ·cm] = R✷[Ω]×thickness[nm]/10.



Chapter 5

EXPERIMENT: SINGLE FERROMAGNETIC
ELEMENTS

When we first considered studying ferromagnetic heterostructures and spin
transport phenomena, it was clear that there was still much to be understood even
in homogeneous ferromagnetic transport alone. As noted in Section 2.1.3, there
was scant evidence for phase-coherent transport on conventional submicron length
scales in ferromagnetic devices, and magnetoresistance in narrow Ni [95] wires sug-
gested novel scattering mechanisms that had not been investigated seriously since
its initial observation. In addition to this, intrinsic domain wall resistivity and
its possible relationship to giant magnetoresistance mechanisms [55,56] was begin-
ning to gain considerable theoretical and experimental interest [96,97]. Ultimately,
though, our initial motivation was simple: we needed to understand the transport
in single ferromagnetic elements completely prior to attempting to understand
transport in heterostructures which may be comprised of many of these elements.

In this chapter, we will examine our experimental studies of electronic transport
in single ferromagnetic elements, paying particular attention to unusual properties
and difficulties particular to mesoscale ferromagnetic devices. We will proceed in
roughly chronological order, first studying the effect of AMR in single submicron
ferromagnetic particles. Following this, we discuss antisymmetries due to our probe
geometry, then proceed to the novel observation of conductance fluctuations in
ferromagnets at low temperatures.

5.1 Sample design

5.1.1 The ellipse geometry

Our ferromagnetic elements are comprised of 30 nm thick submicron polycrys-
talline Ni ellipses on oxidized Si substrates patterned by e-beam lithography and
deposited by e-gun deposition (see Section 4.1 for fabrication details). Rather than
co-fabricate electrical probes in the same lithography step (which would then also
be made of Ni), we choose to pattern a separate 60 nm thick Au layer for the
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probes (see Figure 5.1). The nonmagnetic Au probes are essential to this work
since they simplify the magnetic structure near the Ni ellipses considerably, en-
suring that magnetotransport measurements are not affected by possible domain
structure that would be present at low fields. This need for isolating the magnetic
structure had been ignored in previous experiments by another group affecting the
magnetization distribution considerably [98]. Unfortunately, the Au layer not only
represents an additional step in the fabrication, but also a difficult fine alignment
step requiring sub-100 nm alignment methods not detailed in this work.

The choice of elliptical shape is not arbitrary since a central consideration
in designing ferromagnetic heterostructures is the desire for a controllable mag-
netic structure. In most cases, this means a monodomain structure with clean
magnetization switching properties. Unfortunately, to accomplish this requires a
reduction in dimension so that the shape anisotropy energy dominates the magne-
tization direction [24]. Earlier microbridge SQUID magnetization measurements
by Wernsdorfer et al. [99] showed that such properties were exhibited by 30 nm
thick submicron-scale elliptical particles (see Figure 5.2). As we shall show, our
transport measurements reflect this same behavior, and this geometry has proven
to be a robust design for many of our ferromagnetic heterostructure devices.

5.1.2 “Quasi” four probe geometry

The Au leads have been patterned such that they extend across the ellipse along
the minor axis direction. A four probe measurement performed as indicated in
Fig. 5.1(c) would then measure the Au/Ni contacts in series with the Ni particle.
In this sense, it is only a “quasi” four probe measurement, however, co-fabricated
Au/Ni junctions indicate that this contribution is small and there is no magne-
toresistance associated with these interfaces.

5.2 Anisotropic magnetoresistance in low fields

Figure 5.3(a) shows a typical low-field parallel magnetoresistance (MR) trace taken
at T =1.5 K in a 120 nm×240 nm elliptical particle. Although we show only the MR
for ±1000 G in this figure, the magnetic field is really swept between ±3000 G at
a constant rate of less than 2 G/s.1 Following the sweep from positive-to-negative
magnetic field (dotted trace), one can see a gradual reduction in the resistance

1The high fields are to verify saturation of the particle magnetization, while the slow rate is
for purposes of signal averaging in the resistance measurement.
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Figure 5.1: Single Ni ellipse measurement setup. (a) SEM image of 120 nm×240 nm
Ni ellipse contacted by Au probe wires. (b) Enlarged view of ellipse geometry and
contacts. (c) Schematic of four probe measurement.
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Figure 5.2: Microbridge SQUID magnetization measurements for submicron ellip-
tical ferromagnets. (Figure taken from Ref. [99].)

which is terminated by a single discrete jump, while the negative-to-positive sweep
(solid trace) shows similar behavior in the opposite direction. Before the jumps, the
magnetoresistance is completely reversible while after the jumps, the traces then
become reversible on a second curve which is nearly mirror symmetric with the
original curve. In other samples, the magnetization reversal may occur in multiple
steps. Figure 5.3(b) shows similar traces for a 220 nm×640 nm elliptical particle in
which this step-like transition occurs. The negative-to-positive field sweep (solid
line) shows a single jump as before, but two distinct jumps are observed in the
opposite sweep direction (dotted line). The single large jump in the negative-to-
positive sweep indicates a complete switch in the magnetization direction occuring
in one step, while the two distinct steps in the reverse direction may be due to an
intermediate magnetization state that would be found in the presence of domain
structure or magnetization pinning. Similar positive jumps in the magnetoresis-
tance have also been seen in long wires by Hong and Giordano in studies of domain
wall scattering [57], although, in that work there were a relatively large number
of jumps, indicating the nucleation of many domain walls and giving a more con-
tinuous appearance to the dip structure. The relative scarcity of these multiple
steps in our Ni ellipses is an indication of the strength of the shape anisotropy in
dominating the magnetization and excluding multiple domain states at remanence.

These results above demonstrate that is possible to infer the magnetic state
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Figure 5.3: Parallel field magnetoresistance traces of Ni ellipses at T = 1.5 K. (a)
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Figure 5.4: Schematic representation of the magnetic relaxation process

of a single-domain particle by measuring its MR. In order to do this, one needs
to understand the mechanism which gives rise to the magnetoresistance. While
Hong and Giordano [95] attributed similar positive magnetoresistances in long,
narrow Ni wires to electron-magnon scattering, we find that our MR traces are more
easily explained by a simple anisotropic magnetoresistance (AMR) [19] model (see
Section 2.1.1). In our devices the majority of the current is directed along the major
axis, which coincides with the easy axis of magnetization. Therefore, application
of a strong magnetic field parallel to this axis saturates the resistance to its R‖
value. As the external field is reduced to zero, this magnetization has a tendency
to “relax” into a state with a smaller net magnetic moment along the easy axis due
to demagnetization fields which arise from the shape of the element.2. In order to
relax, the magnetization must begin to deviate from parallel alignment, away from
the current path, providing a R⊥ contribution to the resistance. This is depicted in
depicted in Figure 5.4. As we have noted in Chapter 2, R⊥ < R‖, so this magnetic
relaxation will always be accompanied by a reduction in the resistance. With this
picture, it then becomes possible to estimate the relative magnetization of these
micromagnetic particles using the transport.

In Figure 5.5(a) we plot the MR for both parallel and perpendicular (in-plane)

2Although ellipsoids of revolution are known to have a theoretical uniform demagnetization
field, −4πDM [24], our elements are really “elliptical platelets,” with a uniform thickness. This
nonideal geometry should manifest itself in deviations in the demagnetization field from unifor-
mity. We note in passing that an infinite cylinder is a limiting form of the ellipsoid of revolution,
but the long wires studied in Ref. [95] were not ideal cylinders, hence the magnetic relaxation
mechanism we propose would be valid in that experiment as well



67

6.90

6.95

7.00
R

( Ω
)

R|

-1.00

0.00

1.00

-2000 -1000 0 1000 2000

m
x

H||(G)

(a)

(b)

R||

Figure 5.5: (a) Parallel and perpendicular magnetoresistances of a single Ni ellipse
and (b) the inferred longitudinal magnetization from the parallel field MR. The
solid traces indicate a positive sweep direction, while dotted traces indicate the
reverse.



68

applied fields for the particle of Fig. 5.3. It is clear from the perpendicular MR that
the resistance R⊥ is smaller than R‖ and already, we can see that the deviations
from these two values always point to an intermediate value. This is in strong
support of the picture outlined in the previous paragraph, since our essential ar-
gument is that the MR is dominated by changes in the magnetization through the
AMR effect and all resistance values must correspondingly fall within the range,
R⊥ < R(H) < R‖.

Since the overall Lorentz MR slope is very low, we can estimate the in-plane
AMR ratio using the saturated resistance values from the perpendicular and paral-
lel MRs, arriving at ΓAMR = 1.4% (see Eqn. 2.7 for definition).3 More importantly,
knowledge of R⊥ and R‖ allow us to determine the dependence of the resistance as
a function of the magnetization direction (characterized by an angle θ referenced to
the major axis). If we approximate a uniformly rotating magnetization (in-plane)
as pictured in Figure 5.6, we can rewrite the cos2 θ term of Eqn. 2.8 in terms of the
normalized magnetization component mx along the current path/major axis, i.e.,

R(θ) = R⊥ + (R‖ −R⊥)cos2θ, (5.1)

becomes

R(H) = R⊥ + (R‖ −R⊥)m2
x(H). (5.2)

We can now compactly express the rotated magnetization in terms of the magne-
toresistance,

|mx(H)| =

(
R(H) −R⊥

∆RAMR

) 1
2

, (5.3)

with ∆RAMR ≡ R‖ −R⊥ as usual.
Using this equation, hysteresis loops of the normalized magnetization projec-

tion may be reconstructed from the resistance, inserting appropriate signs at the
coercive fields. The result is plotted in Fig. 5.5(b). Immediately we notice that the
loop is nominally square, agreeing qualitatively with the observations of Werns-
dorfer et al. (see Fig. 5.2), although our loop shows a stronger relaxation of the
magnetization in low fields with mx ∼ 0.85 at zero applied field. In the spirit of
the coherent rotation approximation such remanent values would imply that the

3This value is smaller than bulk values reported in the literature [19], but in agreement with
expectations based on the size-dependence of the AMR [32,33].
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Figure 5.6: Simplified uniform rotation approximation used in determiningmx(H‖).
The schematic shows a uniform magnetization distribution rotating with respect
to the current path/major axis.

magnetization rotates 20–30◦ for the majority of our single domain particles. This
value is certainly much larger than any possible misalignment in the applied field,
and physically such a remanent rotation is unlikely. However, as we have noted,
a more accurate model would show that the remanent magnetization distribution
should not be uniform since demagnetization fields from the constrained geometry
are likely to cant the magnetization near the edges and surfaces. In devices of this
scale, the surface/volume ratio is much higher and the surface can contribute sub-
stantially to the resistance. For instance, to arrive at the remanent magnetization
above, it is necessary to rotate only a few surface monolayers perpendicular to the
major axis. Additionally, if the grain size is comparable to the dimensions of the
magnet, the polycrystalline approximation begins to fail and crystal anisotropy
plays a larger role in deviating the magnetization from the major axis toward the
crystal axes of the separate grains. At present, it is difficult to distinguish between
these relaxation mechanisms, but the nonuniform demagnetizing field appears to
be the simplest explanation. Since the magnetization deviations we are concerned
with occur on length scales much smaller than current magnetic imaging technol-
ogy can resolve, the least expensive route to verifying this would be to solve the
micromagnetic problem analytically or numerically.

What is clear from the above results is that the correlation between magne-
tization direction and resistance is a promising tool for investigating micromag-
netic problems. Previously, the methods for studying micromagnetic structures
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involved either SQUID or Hall magnetometry on large arrays of particles. While
the microbridge SQUID magnetometry of Ref. [99] allows the measurement of single
submicron ferromagnetic particles, it is limited to temperatures below the super-
conducting transition of the SQUID materials (typically Nb or Al). Alternatively,
magnetoforce microscopy (MFM) may be used to study single submicron ferro-
magnets but it becomes technically very challenging at low temperatures, and the
resolution is still insufficient to characterize the minor magnetization shifts that
AMR is sensitive to. In comparison, AMR may be used as a robust magnetization
probe over large temperature ranges with relative ease.

5.3 Probe switching symmetries

5.3.1 The symmetric component

What is not apparent from the low-field MRs presented so far, is the high-field
saturation into a linear field dependence as well as the presence of an overall an-
tisymmetric component. These aspects are more obvious in the high field MR
shown in Figure 5.7, taken at T = 10 K. In Section 2.2 we found that the
MR should support a symmetry in the switching of voltage and current probes,
Rij,kl(H,M) = Rkl,ij(−H,−M) (Eqn. 2.18), where the first two indices repre-
sent the current probes and the last two the voltage probes. It follows then, that
switching the current and voltage probes as prescribed should yield the reverse field
dependence and, indeed, this is what we find. In Figure 5.8(a) we plot the negative-
to-positive MR sweeps for the probe configurations R12,43, R43,21 and the extracted
symmetric component RS = (R12,43 + R43,21)/2 for the Ni particle of Fig. 5.7. In
Fig. 5.8(b) we check the quality of this symmetry by taking the true antisymmet-
ric component of RS, i.e., the residual asymmetry4 Rres = (RS(H) −RS(−H))/2.
Rres shows the strong agreement with Büttiker formula (Eqn. 2.18) for the regions
where the field H and magnetization M have the same sign while also showing
the invalidity of this symmetry for H and M of opposite sign, i.e., below the co-
ercive fields of the ferromagnet.5 Returning to RS, we observe a roughly linear

4In general, when checking the symmetry in some variable, it is advisable to check for offsets
in the zero value by shifting the data in both directions and performing the antisymmetrization
procedure repeatedly. This is especially important when there are sharp features in the data
which can easily create spurious antisymmetries when the data is shifted.

5This symmetry is not so surprising considering that all of the (anti)symmetric components
are extracted with respect to the applied field H and not the internal field B = H +4π(1−D)M .
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dependence due to the Lorentz MR contribution, while the AMR dip is still intact.

5.3.2 The antisymmetric Hall contribution

In Figure 5.9(a) we plot the corresponding antisymmetric componentRA = (R12,43−
R43,21)/2. This component has a slope |dRA/dH‖| = 1.17 mΩ/T and should corre-
spond with a Hall-type contribution to the resistance. At first glance, this seems
unlikely since the current and the magnetization are primarily collinear in this ge-
ometry. However, as shown in Fig. 5.9(b), the current must enter the particle at
some angle due to the geometry of the Au/Ni contacts, creating a Lorentz force
which acts upon the charge carriers. As shown in the figure, the force acts in oppo-
site directions at either end of the particle, which should yield twice the Hall con-
tribution one would measure in an ordinary Hall bar. Recognizing this field depen-
dence, one may attempt to estimate the internal magnetic field Bint = 4π(1−D)M
since the jump in the antisymmetric component corresponds to a full reversal of the
magnetization. By this logic, the change in internal field should be ∆B = 2|Bint|,
and the jump in resistance should correspond with this field,

∆RA = 2|Bint|
∣∣∣∣dRA

dH

∣∣∣∣ . (5.4)

Alternatively, one can simply extrapolate the slopes of the antisymmetric slopes
to RA = 0 and take the difference in field values at those points as shown in
Fig. 5.9(a). By either method, we arrive at a value Bint ∼11.5 kG which is clearly
much larger than the saturation magnetization field ∼6.3 kG for Ni. So what is
the cause of this discrepancy?

In addition to the ordinary Hall effect, in ferromagnets there is an additional
antisymmetric component which is associated with the magnetization, such that
the sum of contributions should read [18],

RA ∝ ρHB + ρM4πM, (5.5)

with the factor ρM denoting a new contribution which is often called the anomalous

This is the essential reason for modifying Eqn. 2.17 to include M (Eqn. 2.18). Here, it is then
assumed that the saturated magnetizations are symmetric in field direction.
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Hall effect (AHE).6 We can now write down the change in resistance,

∆RA ∝ (ρM + ρH(1 −D))8πM. (5.6)

Of the parameters in this equation, we only know the slope ∝ ρH and the magne-
tization. In this example, the ρH term can only account for a change of 1.47 Ω out
of a total of 2.66 Ω, with the remainder due to the AHE contribution. Although
we did not do this, in principle ρH and ρM may be determined in a codeposited
control sample with known demagnetization factors, yielding all the parameters
necessary to determine the internal field if necessary.

5.4 Conductance fluctuations

When the particle from Fig. 5.7 is cooled even further, to T = 1.5 K, fluctuations
in the resistance are observed which are reproducible as long as the temperature
is kept low (see Figure 5.10(a), solid trace). After heating the sample to 10 K and
cooling again to 1.5 K, the fluctuations change into a completely different pattern.
These fluctuations are observed in all field directions, but we concentrate here on
the parallel field MR.

In order to analyze these fluctuations it is necessary to subtract out the AMR
background in a consistent way. It is possible to fit the background to some smooth
function and extract the fluctuations, but a much simpler method is to subtract an
MR taken at a higher temperature where the fluctuation phenomenon is smeared
out. This is valid because the temperature range over which the AMR signal will
change considerably is much larger [19] than the range over which the fluctuations
die out and the AMR contribution should essentially be constant below T ∼ 10 K.
The results of this subtraction procedure are shown in Fig. 5.10(b), where we
have first converted the resistances into conductances, and plotted the difference
in units of e2/h. The two traces shown were taken immediately after each other,
illustrating the level of reproducibility of the fluctuations.7 We find the rms value of
the fluctuations to be ∼0.1 e2/h, which is in agreement with theoretical estimates

6The most widely accepted theory for the AHE postulates a “side-jump” mechanism which
shifts the position of an electron as it scatters in a ferromagnet. A review of the Hall effect in
ferromagnets may be found in Ref. [100]

7Although the two traces are not exactly reproducible, the direct cross-correlation between
them are reasonable considering that the temperature is relatively high (1.5 K) for this sort of
experiment.
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of ∼0.25 e2/h for ferromagnetic metals (independent of field application direction)
[101].

As encouraging as this result seems, we must be cautious in claiming that the
fluctuations are entirely due to the Ni itself. Chandrasekhar et al. [53] pointed
out the need to consider the electrical probes when analyzing weak localization
(WL) and CF phenomena in samples with probe separations less than the coher-
ence length lϕ. Intuitively, this is because conduction electrons can diffuse into the
leads then back into the sample, accumulating phase shifts along these trajectories.
Ultimately this means that what one measures in an quantum transport measure-
ment includes segments of the leads extending lϕ from the sample. We performed
WL measurements in long quasi-1D Au wires (which were codeposited with the Au
probes used for measuring the Ni particles), and determined lϕ ∼ 1 µm at 1.5 K.
In the parallel field configuration, the phase coherent area of the Au probes would
then be Aφ ∼ 0.06 µm2, which would yield a correlation field for the fluctuations
on the order of 0.05–0.10 T. If we estimate lϕ in our Ni to be larger than the Ni
cross-sectional dimensions, w and t, then the relevant area in the correlation field
would be the cross-sectional area itself, yielding an estimate of 0.5–0.6 T, a much
larger scale for the fluctuations. One could directly compare those estimates with
the data, but a more accurate method, which is also valid in homogeneous samples,
is to take the difference in autocorrelation functions of the symmetric and antisym-
metric components of the conductance [53]. This function, F SA = F S−FA, should
then yield the contribution of the sample alone. The results of this analysis for the
fluctuations in Fig. 5.10 appear in Fig. 5.11(a)–(c).

It is apparent from Fig. 5.11 that the autocorrelation analysis is inconclusive.
Although the function F SA seems to be neglible near ∆B = 0, it fluctuates con-
siderably at higher values, as do the functions F S and FA. The reason for this is
most likely the large scale of the fluctuations, since it is difficult to autocorrelate a
function which varies on a scale comparable with its range. In our case, this would
be a function of the maximum field range. If the Ni fluctuations are on the order of
0.5 T as estimated above, then a field range of ±2 T is inadequate. At the moment,
more measurements will need to be performed at higher fields to show that this is
truly phase coherent transport within the Ni. In this case it may be suitable to
fabricate the entire sample (including probes) in Ni since the magnetization will
be saturated in the field regimes necessary to study the effect.
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5.5 Summary

The single particle measurements presented above have not only demonstrated the
feasibility of analyzing the magnetization using the electrical transport, but also
the possibility of realistically subtracting out AMR contributions from the mag-
netoresistance so that we can study other aspects of transport in the MR. Lastly,
we have utilized these methods to examine fluctuations in the magnetoresistance,
providing early tentative evidence for quantum transport in a ferromagnet.



Chapter 6

EXPERIMENT:
FERROMAGNET/SUPERCONDUCTOR

HETEROSTRUCTURES

Recent theoretical interest concerning the possibility of observing the supercon-
ducting proximity effect in a ferromagnetic metal [10,11,102,103] has been gener-
ated by a series of puzzling experiments [6–9] which all seem to indicate an influence
of the superconductor on the transport properties of the ferromagnet. Specifically,
the most dramatic effects were reported in mesoscale ferromagnet/superconductor
(FS) structures studied by Petrashov et al. [6]. In that work, a large drop in re-
sistance below the critical temperature Tc was found in clean contacts, while a
rise in resistance occurred in higher interface resistance samples. In addition, the
structure of the differential resistance vs. magnetic field phase diagram suggested
an influence of the ferromagnetic element on the superconductor emphasizing the
importance of magnetic field penetration due to the ferromagnet’s field. The large
drop in resistance was believed to be an indication of a “giant” proximity effect
which extended an estimated 0.6–1.0 µm into the Ni. As mentioned previously (see
Chapter 3), this value is orders of magnitude larger than the estimated length of su-
perconducting correlations in the ferromagnet due to the strong exchange field (see
Chapter 3 ). This length, lex =

√
h̄D/kBΘC (where ΘC is the Curie temperature1),

is estimated to be on the order of 2–20 nm, and any superconducting proximity
effect should therefore manifest itself in a somewhat less dramatic effect than that
seen in comparable NS heterostructures. At least one publication [103] has sug-
gested a mechanism which extends lex, yet even those estimates fall very short from
the value estimated by Petrashov et al. in their experiments [6]. Additionally, lack
of evidence for such a long length scale has not been seen in high quality multilayer
thin film studies [105,106], casting a dubious light on the possibility of a true long
range effect in relatively disordered ferromagnets.

In this chapter, we explore this issue experimentally, focusing on the effect of

1ΘC = 631 K in Ni [104]. In practice, it is often useful to convert this to an equivalent energy,
kBΘC = 54.4 meV.
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the FS interface in creating conditions similar to those studied in the Petrashov
experiment. In addition to duplicating similar temperature dependent behavior in
our devices (with an emphasis on probe placement), we also demonstrate evidence
for spin dependent transport from F to S in the form of antisymmetries in the dV/dI
measurements. Although we see little evidence for a proximity effect in our Al/Ni
devices, the remaining problem of transport across the FS interface is interesting
in itself and spawns a number of interesting questions for future experiments.

6.1 Experimental setup

6.1.1 Device design

One of our primary goals in beginning this experiment was to measure the response
of a ferromagnet in contact with a superconductor without inclusion of the FS in-
terface in series or in parallel. If we are to probe an effect estimated at a little over
half of a micron, then this necessitates very narrow probes very close to the inter-
face. In addition, we want a controllable magnetic state, preferably monodomain
at remanence which can be monitored independently of the interface.

In Figure 6.1 we show our realization of such a device, utilizing our past experi-
ence in micromagnetic transport (see Chapters 2 and 5). The Ni particle is a 30 nm
thick, 200 nm×500 nm ellipse fabricated using the methods outlined in Chapter
4. The ellipse is contacted on the top by four separate 50–60 nm thick Au probes
(in contrast to the connected I±/V± Au probes used in the single ferromagnetic
particle measurements of Chapter 5) which can be configured in a true four probe
measurement of the Ni ellipse alone. The Ni is then overlapped on one end by a
four lead 50-60 nm thick Al wire which crosses the ellipse along its minor axis and
is connected to Au probes less than two microns away.

Note that we have incorporated the elliptical shape of the experiments in Chap-
ter 5, taking advantage of the two-state magnetization properties for the purposes
of simplifying the magnetic field distribution in the vicinity of the interface. Corre-
spondingly, all of the measurements shown which incorporate a magnetic field are
performed with the field axis applied along the major/easy axis of the ellipses. This
parallel field configuration has the added advantage that it couples the least flux
into our thin Al films, raising the critical field considerably over the perpendicular
critical field value.
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Figure 6.1: (a) Scanning electron micrograph of elliptical FS structure and (b)
probe schematic for electrical measurements.
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6.1.2 Probe configurations

The separation between the Au and Al probes near the Al/Ni (FS) interface is
always verified in our scanning electron microscope prior to loading into the cryo-
stat. This gap is usually between 20–50 nm in distance, such that any long-range
proximity effect will be measurable in our probe configuration.

For the measurements presented here, we use three different probe configura-
tions,2 labeled “1” to “3” (see Fig. 6.1(b)):

• Configuration 1 measures the four probe resistance of the Ni ellipse between
Au probes along the major axis. Note that this is independent of the Al/Ni
interface and can essentially measure any proximity effect that extends into
the vicinity of the voltage probes V1.

• Configuration 2 measures the four probe Al/Ni interface resistance (which
includes the short Ni gap between the Au and Al probes V2.) This is inde-
pendent of the behavior of the rest of Ni particle and allows a measurement
of the interface transport directly.

• Configuration 3 measures the four probe resistance of the Al/Ni interface in
series with the Ni particle. This is essentially the same measurement as that
performed in the Petrashov experiment [6].

In addition to these probe configurations we also can measure the resistance of
the overlapping Au wire independently with four probes, labeling this quantity
RAl. Similarly, all other resistances measured will hereafter be indexed by their
corresponding probe configuration, i.e., R1 will denote the resistance measured in
configuration 1, etc..

6.1.3 Additional geometries

In addition to the geometry presented in Fig. 6.1, we also measured other slightly
different configurations as shown in Fig. 6.2(b) and (c). These variations were
designed with the idea that by avoiding overlap with the ends of the Ni element,
one could eliminate flux penetration into the Al that would otherwise occur. We

2Since there is no probe-switching symmetry applied in these experiments (as in Chapter 5),
we forego the usual mesoscopic transport notation for four probe measurements (Rij,kl) in favor
of this simplified version which assumes the ± probe designations by context.
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will return to this point in the discussion of our dV/dI measurements of the Al/Ni
interface.

6.1.4 Measurement techniques

Here we utilize ac lock-in/bridge measurement techniques which have already been
outlined in detail in Chapter 4. It important to note, however, that caution has
been applied in choosing our excitation currents to avoid excessive self-heating.
Accordingly, measurements which include the interface in the current path are
performed with an excitation current of 10–50 nA, while the Ni particle measure-
ments are taken with 100–500 nA.

6.1.5 Material parameters

In addition to the FS samples themselves, control samples of Ni wires, Al wires
and Ni/Al interface samples are also fabricated simultaneously in order to charac-
terize the material parameters of the films and interfaces. From low temperature
measurements on these control samples, the resistivity of the Ni film was estimated
to be ρNi ∼6.6 µΩ·cm and that of the Al film ρAl ∼8.4 µΩ·cm, corresponding to
electronic diffusion constants D = (1/3)vF l (where vF is the Fermi velocity and l
the elastic mean free path) of DNi ∼104 cm2/s and DAl ∼26 cm2/s respectively
(see Section 4.3.1).

The interface resistances were not always consistent due to contamination of
the Al deposition sources from the TiB2-BN crucible liners used. This resulted in
comparatively low diffusion constants DAl and various Al/Ni interface resistances
(from ∼19 Ω to 1.2 MΩ, all with similar interface areas). With these facts in mind
we believe that the variation in Al/Ni interfaces resistances is probably due to
diffusion of impurities to the interface and, consequently, the barriers are probably
in the diffuse or “dirty” regime.

6.2 Temperature dependences

The various probe configurations listed above allow us to monitor many different
elements of the system individually, and since the Ni particle is shorter than the
estimated proximity length estimated by Petrashov et al. [6], the temperature
dependence of the Ni particle resistance R1 should be dramatic. However, as
shown in Figure 6.3, the situation is quite different.



85

1 µm

1 µm 1 µm

Figure 6.2: Variations on sample geometry. (a) Geometry A. Original geometry
shown in previous figure. (b) Geometry B. Modified version of A, although Al does
not overhang end of Ni. (c) Geometry C. Crossed wire geometry.
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Figure 6.3 shows the temperature dependences of the three configurations listed
above, as well as the resistance of the Al wire in contact with the Ni, all in zero
applied magnetic field. In this case, we observe a normal state interface resis-
tance R2,n = 23.8 Ω while the normal state Petrashov-type resistance R3 yields a
value approximately 2 Ω higher, corresponding to the addition of the Ni particle
resistance to the interface resistance. In Fig. 6.3(a) it is apparent that these two
resistances R2 and R3 have essentially the same temperature dependence, both
showing a peak at the superconducting transition (Tc ∼1.4 K), decreasing as the
temperature is lowered further, then beginning to rise again between 0.8 and 0.9
K, until they have almost reached their normal state values at our lowest temper-
ature of ∼0.28 K. Already, in these measurements, we can notice that the lack of
difference in the two temperature dependences R2(T ) and R3(T ) is a significant
indication that there is no change in the Ni by itself. If we measure the Ni resis-
tance R1 simultaneously we can confirm this and the result is shown in Fig. 6.3(b).
Essentially there is no temperature dependence in the Ni to within our measure-
ment noise, implying that there is no superconducting proximity effect within the
Ni. This same result was confirmed in all of our other devices over a large range
of interface resistances.

Having established the absence of a proximity effect in the Ni, we can now dis-
cuss the physical sources for the temperature dependence of the interface resistance
R2.

The peak R2,3 in Fig. 6.3(a) is characteristic of many mesoscopic NS devices
in which the voltage probes lie within a charge imbalance length of the inter-
face (see for example Ref. [86, 107]) and the potentials being probed are a mix of
quasiparticle and Cooper pair potentials. Although the temperature dependence
measurement occurs with zero voltage/current bias, the excitation current pro-
vides enough energy bias to exceed the negligible superconducting gap energy at
Tc and inject quasiparticles into the Al. Since there can be a large difference in
the quasiparticle potential (measured by normal probes) and Cooper pair poten-
tial (as measured by the superconducting probes), a large potential difference may
be produced between normal and superconducting probes [108] resulting in the
peak shown. This peak was seen in other similar devices of comparable interface
resistances, but disappeared with slightly higher values of this parameter.

Figure 6.4 illustrates the temperature dependence for various resistance values.
Except for the very highest resistance (1.23 MΩ), all of our temperature depen-
dences showed a reentrant behavior similar to the reentrant proximity effect seen in
many mesoscopic NS devices (see for example Ref. [63]). However, since we know
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that such an effect is negligible in the Ni, we can attribute the entire dependence to
sub-gap transmission processes, i.e., Andreev reflection at the interface. In doing
so, we return to the BTK picture of transport [69] outlined in Chapter 3. In the
1.23 MΩ sample for example, we see a resistance that increases very rapidly below
Tc, indicating the vanishing probability of FS transmission as Andreev reflection is
suppressed in the high barrier limit.

6.2.1 Multiple states

In many instances the interface resistance temperature dependences R2(T ) showed
multiple distinct states which could be seen in both temperature and magnetic
field cycling (see Figure 6.5). The reasons for this are unknown currently, but
we believe that a possible source could be the existence of either flux trapping
in the Al probes or multiple screening states in the Al near the interface. Either
phenomenon could alter the quasiparticle density of states close to the interface
which could considerably alter the barrier transmission properties. In any case, the
source seems to be metastable in the presence of small amounts of background noise,
although this observation is only a qualitative observation and the overlapping Al
wire was confirmed to remain in the superconducting state. For the discussion
which follows we call the high resistance state, “state 1,” and the low resistance
state, “state 2.”

6.2.2 BTK numerical fits to the temperature dependence

If the transport can be at least qualitatively described by a BTK-type model, can
it be fit as such? To answer this, we fit the temperature dependence using a set
of programs written by the author to originally calculate dV/dI curves following
the BTK description. After modifying the BTK coefficients to account for the
polarization (see Chapter 3), we attempted to fit the data. In doing so, however,
we ran into a number of problems. First, the magnetic field near the interface
is likely to be inhomogeneous on the scale of the coherence length (estimated to
be 50–60 nm by a separate Tc vs. H measurement) due to the close proximity
to the Ni. Second, it is unclear what this field should be in zero-applied field.
Therefore, to fit the data at least three free parameters (the magnetic field H, the
polarization P and the barrier height Z) were needed in most cases. To compound
these problems, the critical field Hc was experimentally determined to be between
3000 and 4000 G, however this number should already include the field generated
by the Ni itself, so in practice, it was necessary to have a fourth free parameter,
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sample parameters free parameters
Geometry R2,n(Ω) H(kG) Hc(kG) P% Z

A 23.8 4.41 6.30∗ 29.9 0.38
B 44.0

(State 1) 3.13 8.48 31.5 0.45
(State 2) 4.52 11.5 34.8 0.38

A 556
(State 1) 6.75 21.8 0.00 0.66
(State 2) 4.71 15.5 21.1 0.47

C 1.23×106 0.26 20.6 28.3 2.07

Table 6.1: BTK fitting parameters for FS interface resistance temperature depen-
dences shown in Fig. 6.6. ∗Fixed parameter in fit.

the field, in order to get anything that resembled a decent fit. For reference, in
Table 6.1 we give the fitting parameters for the temperature dependences for four
different samples. The results of these fits are shown in Figure 6.6.

Although many of the fits look reasonable, an examination of the table of
parameters (Table 6.1) reveals a number of odd things. For the most part, the fitted
fields H are all in the vicinity of 5 kG which seems to correspond reasonably well
with the internal field from the magnetization of Ni, 4πM ∼6.3 kG. The exception
to this was the 1.23 MΩ sample, which was a crossed Al/Ni configuration (geometry
C), yielding a field H ∼260 G. However, anisotropic magnetoresistance (AMR)
measurements (not shown) of the Ni in this geometry, demonstrated multidomain
behavior at zero applied magnetic field. In this sense, the local magnetic field profile
near the interface could be considerably attenuated in magnititude from the single
domain particle case and a lower value of H would therefore be reasonable. When
examining the critical fields though, they all seem quite high, mostly between 1 and
2 T, although, in principle, this is reasonable for short superconducting coherence
lengths as in our case.

Additional examination of the fitting parameters reveals a systematic increase in
Z with the interface resistance, although one would intuitively expect larger values
for R2,n =556 Ω and 1.23 MΩ. However, the polarizations, with the exception of
the 556 Ω interface (state 1), all yield values P = 20–35%, agreeing loosely with
the accepted value for Ni of 23% from tunneling measurements [78]. What is also
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interesting is the P = 0 result, since this seemed to be immune to any variations
in the starting parameter values in the fitting routine and deviates so much from
the rest of the polarization fits. Whether this has any fundamental physics behind
it is debatable, and whether the fits themselves bear any strict correspondence to
reality may be a matter of interpretation as well.

The BTK theory was developed assuming that the momenta served as good
quantum numbers describing the quasiparticle states, but, as stated in the original
paper [69], this may not be the case in dirty metals, and a rigorous correspondence
with our system may be out of line. In this case, a more generalized and heavily
abstracted approach based in a quasiclassical Green’s function formalism3 may be
required. While the agreement of the polarization values with a standard (tun-
neling result) value is tantalizing, for now, we simply interpret the BTK fits as a
qualitative tool in understanding the transport and nothing more.

6.3 Magnetic field dependence of the resistance

Figure 6.7 shows parallel field magnetoresistance traces for the Al wire, Ni particle
and Al/Ni interface. In the Al/Ni interface resistance R2, we observe sharp jumps
at ∼ +350 and −300 G (Fig. 6.7(a)), corresponding with the coercive (switching)
fields of the Ni ellipse (Fig. 6.7(b)). This correspondence can only be explained by
a strong dependence of R2 on the local magnetic field, specifically, that generated
by the Ni ellipse. This sensitivity of the FS transport to local magnetic field will
be seen repeatedly in the discussion which follows.

6.4 The differential resistance dV2/dI of the FS interface

Figure 6.8 shows the results of dV2/dI measurements performed in the R2,n=23.8 Ω
sample in a series of magnetic fields applied along the major axis of the Ni ellipse.
Upon first examination, one notices very sharp peaks at ∼ ±5.8 µA. As mentioned
earlier, similar peaks are seen in NS structures and are believed to be associated
with charge imbalance effects [86,107]. The rest of the structure is similar to what
one would expect from the BTK model we examined earlier, displaying a reentrant
behavior with increasing current bias, and perhaps this is not surprising given
prior knowledge of the temperature dependence. What is curious, however, is the
appearance of an antisymmetry in the dc current bias. This is most obvious in

3For a review of the basic techniques see Belzig et al. [109].
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the sharp H = 0 G trace in Fig. 6.8, but this antisymmetry is present at fields
up the critical field, in traces where the charge imbalance peaks are not as sharp.
In Fig. 6.9, we illustrate the antisymmetric component directly, for a dV2/dI trace
taken in an applied field of 600 G.

6.4.1 Possible sources for antisymmetry in dV2/dI

One may point out that the presence of an antisymmetric component can be due
to many factors, not the least of which is measurement error. It is possible, for
instance, to get an antisymmetric component from fine structure, such as sharp
peaks, from a poor choice of bin size in the averaging when taking the data. Such
mistakes would be evident in correlated peak structure in the antisymmetric com-
ponent and are usually noticed in the original trace as an obvious hysteresis or non-
reproducibility in subsequent traces. Alternatively, one may have a maladjusted
zero-point calibration in the voltage-to-current converter for the dc current bias, or
even a bad zero-point in the preamp which monitors the current. A misalignment
of this zero-point would then result in broad undulations in the antisymmetric
component on the scale of the features in the original trace. We can see that such
behavior is absent in the antisymmetric component in the example in Fig. 6.9 as
there are large flat regions, with nonzero values clustered locally near the peak
locations in the original dV2/dI. The zero-points were also checked by shifting the
traces a small amount in the positive and negative directions and repeating the
antisymmetrization procedure.

Another source for antisymmetry in a dV/dI measurement is a possible ther-
mopower contribution which has already been seen in experiments by Eom et al.
in NS devices [80] and AuFe spin-glass wires [110]. In the NS experiments, it
was found that the thermopower contributed an antisymmetric component to the
dV/dI which had a characteristic sharp finite slope at the zero-crossing, with most
of the structure confined to this region. We can see from Fig. 6.9(b) that a similar
structure is clearly absent from our measurements.

After eliminating the sources outlined above, we conclude that the antisym-
metric components are indeed real and that they may correspond to an actual
transport mechanism.

Spin-polarized transport?

As shown in Chapter 3, even the application of a 1 kG field can be seen to Zeeman
split the quasiparticle density of states, giving an antisymmetric contribution to
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the differential tunnel conductance between a ferromagnet and a superconductor
(see Fig. 3.8). As suggested by Mélin [12], this effect may also be seen in the differ-
ential conductance of FS devices with arbitrarily strong barriers. To examine this
possibility, we reversed the direction of the Ni ellipse magnetization with respect
to the applied magnetic field and compared the results from this antiparallel state
to its parallel counterpart. The results, shown in Figure 6.10, are intriguing.

In this example, we have ramped the magnetic field to a large negative field,
saturating the magnetization of the Ni ellipse in this direction, and then ramped
the field down to H = +200 G and persisted the field such that the magnetization
remained negative. In this state the magnetization and the applied magnetic field
are antiparallel (m < 0, H > 0). At this point we took the dV2/dI trace shown
in Fig. 6.10(a) (dashed trace). We then immediately ramped the field to +450
G, switching the magnetization to point along the applied field axis, then relaxed
the field once more to +200 G. In this state both the magnetization and applied
field are positive (m > 0, H > 0). In this configuration, we took the second trace
shown in Fig. 6.10(a) (solid trace). Immediately, one can observe a difference in
the peak locations, presumably because the local magnetic field profile has changed
considerably. In the antiparallel configuration the local field is reduced from the
value of the parallel configuration, suppressing the superconducting gap even less,
thus bringing the peaks to higher values. What is more interesting in this example
is that the behavior of the antisymmetric components (Fig. 6.10(b)). Along with
the shift in peak structure, we also observe an apparent inversion of the peak/dip
structure between the two configurations. Such an observation might be considered
significant evidence that the antisymmetries observed are due to polarization of the
electrons transmitted across the barrier. However, it should pointed out that the
BTK fits shown earlier seemed to mostly yield magnetic fields of a few kG. But, if
not taken literally, this may be not really much of an objection. Afterall, the peak
structure in the dV2/dI curves still suggests a reduced local field in the antiparallel
configuration as pointed out above. While not completely clear evidence, it is
suggestive and further experimental confirmation of this behavior would necessitate
a better understanding of the local field profile either through a novel device design
or a much weaker ferromagnet. We do know that some magnetic field must be
present at the interface in zero applied field since the antisymmetric component
exists there as well.
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6.5 The differential conductance dI/dV2

As tentative as the evidence presented above may be, a more rigorous confirmation
of spin-polarized transport may be performed in our highest resistance sample
(R2,n = 1.24 MΩ). Although the resistance would indicate that this should be in
the tunnel junction regime, both the temperature dependence (Fig. 6.6(d)) and the
differential conductance dI/dV2 indicate that it is not. Figure 6.11(a) shows such
a measurement, performed in an applied field of 1 kG.

Upon first observation, it appears that there may be a small offset in the bias
voltage, with the minimum of the central dip positioned slightly lower than zero.
After a thorough search for any systematic errors in the bias voltage readout circuit,
we determined that this shift in the minimum is real. This is more apparent if
one performs a simulation under similar parameters as shown in Fig. 6.11(filled
circles). [The numerical simulation shown is generated from our modified BTK
model assuming the following parameters: P = 0.28, Z = 2.07, H = 5 kG,
Hc = 20 kG (note that we have taken the magnetic field to be larger than the
applied magnetic field).] While the experimental and simulated data are quite
similar, with the exception of peak height, their antisymmetric components are
almost identical. This calculated antisymmetry is a direct result of spin-polarized
transport as outlined previously in Chapter 3, and is qualitatively similar in shape
and magnitude to the results of our numerical calculations for FS tunnel junctions
(see, for instance, Figs. 3.7 and 3.8). As for the shift in the central minimum,
this can now be understood as a direct result of the weighted spin subchannel
transmission into the quasiparticle density of states in the superconductor, which
subsequently gets “smeared” unevenly into the center at finite temperatures.

In light of the above considerations, we conclude that this high resistance data,
in combination with our numerical simulations, provides the first explicit strong
evidence for spin injection into a superconductor in mesoscopic heterostructure
device.

6.6 dV2/dI vs. magnetic field

In addition to antisymmetry studies of the differential resistance dV2/dI we also
investigated the magnetic field dependence. Figure 6.12 shows some low-field nor-
malized traces for our R2,n =23.8 Ω and R2,n =44.0 Ω samples. Although the
conventional method of displaying this data is to offset the curves in the dV2/dI
axis, it is helpful to map the data in a 2D plot due to the number of fields mea-
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sured. This alternative representation is shown in Figure 6.13 and gives us a little
more insight into the phase diagram of these two systems.

In Fig. 6.13(a) we notice that peaks in the differential resistance draw steadily

inward as the magnetic field increases, in a (1− (H/Hc)
2)

1
2 behavior characteristic

of the parallel field dependence of the superconducting gap [111, 112]. The phase
diagram of Fig. 6.13(b) shows a similar behavior beyond 2000 G, yet below this
threshold there is a considerable deviation as the gap appears to close at smaller
fields. This behavior was also seen in the Petrashov FS experiment [6] and it was
believed to be a consequence of the magnetic field distribution near the interface.
In that geometry, the field was applied out-of-plane, tipping the magnetization
away from its in-plane easy axis resulting in deviations in the phase diagram at
low-fields where the magnetization was not saturated. In our case, however, the
magnetization of the ellipse is in a partially relaxed single domain state (as ev-
idenced by AMR measurements similar to Fig. 6.7(b)), and there are no drastic
changes to this state as the field is increased. However, a clue to this behavior may
lie in the device geometry itself. The device measured in Figs. 6.12(b) and 6.13(b)
is slightly different in that the Al wire overlaps the end of the Ni particle without
covering the end entirely (geometry “B” in Fig.6.2), at the point where most of the
magnetic flux should exit the sample. In this sense, the magnetic profile may be
very different than the original geometry (“A” in Fig. 6.2) in that it may couple
the exiting flux as it winds back to the other end of the particle, counter to the
direction of the particle magnetization. This would offset the effective field in the
superconductor (near the interface) negatively with respect to the magnetization.
This offset would then appear as an offset phase boundary as the applied field is
increased in the direction of the magnetization, in this case corresponding to −2000
G. While this explanation is still speculative at the moment, we believe that these
phase diagrams underscore the effect of the ferromagnetic particle’s contribution
to FS transport through the magnetic field generated by its intrinsic magnetiza-
tion distribution. Consequently, phase diagram measurements such as this will be
useful in future experiments in determining the homogeneity and level of magnetic
field penetration at the FS interface.

6.7 Summary

Although the initial question of a ferromagnetic proximity effect was the initial
motivation for this series of experiments, it was also the simplest to answer. As we
have shown in our devices, FS interface resistances can masquerade as a proximity
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effect if they are not accounted for with a suitable probe geometry. Meanwhile, the
remaining measurements presented in this chapter have illustrated the possibility
of spin-polarized transport into a superconductor with the specific hallmark being
an antisymmetric component. Although early FS tunneling measurements [78] had
to utilize very high fields to distinguish the splitting in the quasiparticle density
of states, our antisymmetrization methods give at least a qualitative indication
that a spin-polarized current is being transported in much smaller fields where the
Zeeman splitting is also relatively small. However, in such low-field measurements,
the local magnetic field distribution can play an integral role in determining FS
barrier resistance and, consequently, experimentalists and theorists alike should
exercise caution in dismissing such an effect in an analysis or calculation.



Chapter 7

SUMMARY AND CONCLUSIONS

As a topic of study, ferromagnetic metals seem, in many ways a last frontier
for mesoscopic metallic device physics, with many of the classic quantum transport
effects already established in nonmagnetic systems. There are, of course, exceptions
to this rule as the Coulomb blockade effect and mesoscopic NS heterostructures
are fairly recent additions to this roster. However, since the birth of the modern
era of mesoscopics, there has been surprisingly little done in the area of mesoscopic
magnetic devices. It is difficult to say for certain why this has been so, but part of
the reason may lie in the historical significance magnetic impurities have played in
reducing the phase coherence length. In a more practical sense, however, mesoscale
magnetic devices have been avoided because of the nontrivial domain structure
which can exist even in submicron magnetic elements. In this sense, it is hoped that
what is outlined in this thesis can serve as a partial roadmap of hazards to avoid
and methods for identifying these hazards unambiguously in a language relevant to
the mesoscopic physicist. It is in this spirit that we summarize the contributions
of this thesis to the future study of mesoscale ferromagnetic transport.

7.1 Submicron ferromagnetic transport, quantum and otherwise

In Chapters 2 and 5, we outlined the general methods for interpreting the mag-
netotransport of submicron single-domain ferromagnets. It was found that the
magnetization could be correlated to the magnetoresistive response through the
anisotropic magnetoresistance (AMR) effect [19] and that this effect could, in turn,
be easily differentiated from quantum interference effects such as weak localization
and conductance fluctuations. Furthermore, it has been demonstrated that magne-
totransport could be utilized as a robust tool for studying micromagnetic elements
over a wide temperature range, exploiting the ubiquity of AMR rather than derid-
ing it as a nuisance.

Additionally, a solid understanding of the AMR contribution (as well as its
counterpart, the Lorentz magnetoresistance) is useful in assessing the conclusions
of a number of domain wall experiments [25–28, 55–59], one of which [58] we ana-
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lyze in Appendix A. Similarly, theorists have postulated possible contributions to
the intrinsic domain wall resistivity through weak localization-type corrections at
low temperatures [97, 113] and it will be incredibly important to understand the
less exotic contributions to the magnetoresistance prior to making a quantitative
analysis of such a mechanism.

Other future prospects for ferromagnetic device studies include the possibility
of an unambiguous determination of the phase coherence length in a ferromag-
netic metal (which is still a bit of a Holy Grail to some experimentalists) following
the precautions outlined in Chapter 2. This may be done either through a weak
localization type of measurement or through an autocorrelation analysis of the
conductance fluctuation data. However, on a more practical level, it is hoped
that submicron single domain elements will be incorporated into more complicated
heterostructures as they can provide convenient sources for spin-injection and de-
tection in micron scale “spintronic” circuits.

7.2 Ferromagnetic/Superconductor transport

In Chapter 2 we discussed possible ways of understanding the temperature and en-
ergy bias dependence between ferromagnets and superconductors with arbitrarily
strong interface barriers using a modified Blonder-Tinkham-Klapwijk [69] descrip-
tion of electronic transport. In doing so, we demonstrated that spin-polarized
transport into quasiparticle states in the superconductor should naturally manifest
itself in an antisymmetric component in the differential conductance or resistance.
Furthermore, it was shown that this component could be distinguished in rela-
tively modest fields where the Zeeman splitting is less than the thermal energy
kBT , whereas earlier FS tunneling experiments relied on Tesla scale fields [78].
This antisymmetrization procedure can already be applied to zero applied field
measurements in FS point contacts [83–85] to detect possible field penetration into
the superconductor. In addition, it should be feasible to perform low-field point
contact measurements as another eperimental probe of the polarization, rather
than measuring the zero-field conductance alone as is done currently.

In Chapter 6, we demonstrated the lack of an appreciable proximity effect in
our Al/Ni devices. Instead, we showed that the strong temperature dependences
seen in previous work [6] could be accounted for in our samples as contributions
due solely to the FS interface resistance. To verify this picture, we engaged in
a series of temperature and bias dependence measurements in FS devices with
various barrier resistances, ultimately showing that the spin-polarization of the
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ferromagnetic charge carriers may play an important role in interpreting FS trans-
port phenomena. Additionally, it was found that magnetic flux generated by the
ferromagnetic elements could penetrate the superconductor with dramatic results
in the FS transport. Although this is seldom discussed in theoretical treatments of
the FS problem, our experiments show that it can be difficult to dismiss this con-
tribution outright and should always be considered in an FS experimental analysis.

Currently, the possibilities for these devices are too numerous to list here. How-
ever, as this thesis has treated both quantum interference and FS transport, it is
interesting to ask whether the two could not be coupled in a manner similar to the
NS case, where the macroscopic phase of a superconductor can be coupled to the
phase of normal state electrons. Even if the phase coherence length is of the order
of one hundred nanometers, it should still be possible to lithographically define a
hybrid FS interferometer such as a superconducting ring bridged by a very short
ferromagnet. In principle, it would then be possible to study phase decoherence
effects (such as those postulated in domain walls [113]) using the amplitude of the
interference as a gauge. This relies only on a coupling between the superconduct-
ing and normal electron phases and not on any extensive proximity effect. Such
an experiment would also demonstrate electronic phase coherence in the ferromag-
net on some finite mesoscopic length scale. In any case, it clear that hybrid FS
structures offer a number of experimental opportunities that can exploited for pur-
poses of enhancing our knowledge of ferromagnetic quantum transport as well as
spin-polarized quasiparticle transport in superconductors.
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Appendix A

DOMAIN WALL RESISTIVITY EXPERIMENTS AND
ANISOTROPIC MAGNETORESISTANCE

Although we do not specifically address the issue of DW resistivity experimen-
tally in this work, it is a worthwhile momentary digression due to great theoreti-
cal [96, 97, 113–115] and experimental [25–28, 55–59] interest in recent years. The
experimental challenge in measuring the resistivity of a DW is chiefly in charac-
terizing the AMR contribution due to the nonuniform magnetization distribution
in the wall. For this reason, it is preferable to fabricate wires or films with dimen-
sions comparable to the bulk domain size in an effort to reduce or simplify the
magnetization distribution. However, in such small samples, minor deviations in
the magnetization may have a much greater effect through the AMR than in larger
devices and it is a nontrivial task to isolate the contribution due solely to the DW
resistivity. Here we will concentrate on the experiment of Taniyama et al. [58] as
representative of the subtle problems that arise in attempting to subtract out the
AMR contribution from the intrinsic DW contribution in mesoscale devices.

In the Taniyama experiment, the resistance of a thirty segment Co zig-zag
wire was measured as a function of field. This novel zig-zag geometry allowed the
preparation of an aligned monodomain remanent state (Fig. A.1 (a)) as well as an
anti-aligned multidomain remanent state (Fig. A.1 (b)) by saturating the magnetic
field longitudinally or perpendicularly to the general axis of the wire. Due to the
strong shape anisotropy, the domains preferred to align along the zig-zag arms,
and it was assumed by the authors that the current distribution is completely
collinear with the arms, only sampling the longitudinal resistivity ρ‖. In this way,
it was believed that the resistance in the multidomain state was entirely due to the
intrinsic DW resistivity.

It should be immediately obvious (by Maxwell’s equations and by symmetry)
that equipotentials should bisect the corners and the current should cross these
equipotentials at normal incidence, i.e., the current cannot be completely collinear
with the arms at the corners. This is not too much of a problem since the magneti-
zation must also “turn” with a finite radius at the corners as well and this probably
does not provide much of a correction to the total resistance (Fig. A.1(c)). How-
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Figure A.1: Zig-zag geometry from Taniyama et al. [58] for measuring the DW
resistivity. (a) monodomain state, (b) multidomain state with DWs localized at
the corners, (c) enlarged view of monodomain magnetization (grey arrows) and the
general alignment with the current paths (solid arrows), (d) enlarged view of the
multidomain state with DWs (light grey).
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Figure A.2: Approximation of the zig-zag in Fig. A.1 as a straight wire with
perpendicular DWs of width δdw

ever, this assumption is not true for the multidomain state (Fig. A.1(d)) where the
DWs are comprised of magnetic moments pointing towards the corners at a 45◦

angle to the arms, or ∼90◦ to the current paths. If we take the radius of curvature
of the current paths at the corners to be larger than the DW width δdw then we
can simplify the multidomain picture and “stretch out” the zig-zag into a straight
wire with Ndw DWs and further assume that the majority of the magnetization
lies along the axis, with the domain wall magnetizations lying perpendicular to the
wire axis1 (see Figure A.2).

At this point we can ask what is measured by the total resistance of such a
wire if we have Ndw DWs of width δdw and include the intrinsic DW resistivity ρdw

along with the AMR. The total resistance is then

Rtot,w/walls =
ρ‖(L−Ndwδdw)

A
+

(ρ⊥ + ρdw)Ndwδdw
A

, (A.1)

where A is the cross-sectional area. The first r.h.s. term is the resistance of the

1This is the assumption made in drawing Fig. A.1, however, even if the current path radius of
curvature is much smaller than δdw, then the angle between the current and the magnetization
at the corners is 45◦ rather than 90◦, and this straight wire approximation will still have some
validity if the DW magnetization is adjusted accordingly.
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arms where the magnetization is parallel to the current path, while the second
term is DW resistance assuming that the magnetization is perpendicular to the
current path there. The resistance difference between the multidomain and the
monodomain state should then yield the resistivity contribution from the DWs
with the following relation,

∆Rtot = Rtot,w/walls −Rtot,w/o walls

= (ρdw − ∆ρAMR)
Ndwδdw

A
. (A.2)

Since Taniyama et al. prefer to deal with the change in the average resistivity2 we
also write the equivalent equation,

∆ρtot = (ρdw − ∆ρAMR)
Ndwδdw

L
. (A.3)

From the form of Eqn. A.3 it is easy to see that the change in resistance con-
tains contributions from both ρdw and ∆ρAMR. However, this form is specific to
our starting assumptions, namely, that the current distribution deviates from the
magnetization direction in the DWs. Taniyama et al. assume that the zig-zag ge-
ometry eliminates this (without any magnetic imaging to confirm this). According
to that assumption, the resistivity factor in the second term of Eqn. A.1 would be
ρ‖ + ρdw which would alter the change in the average resistivity to read

∆ρtot = ρdw
Ndwδdw

L
. (A.4)

In their actual experiment Taniyama et al. found ∆ρtot ∼ −0.01 µΩ·cm. With
twenty-nine DWs, an assumed δdw ∼ 0.015 µm3 and a total length of 61.5 µm this
gives a DW contribution ρdw ∼ −1.4 µΩ·cm by Eqn. A.4.4 If we revert to the other

2In principle the average resistivity and the resistance are interchangeable, although in this
thesis the use of the resistivity implies a spatial dependence, ρ(x)— an intrinsic anisotropic
quantity that varies with the local magnetization direction. This is not the case in the Taniyama
experiment [58] where ρ = ARtot/L, which is really only the spatial average over the length L.

3This width is taken from room temperature magnetoforce microscope measurements of a
Co thin film of similar thickness [55]. Micromagnetic shape anisotropies may alter this width
considerably [24] and it is far more preferable to have a direct measurement of this quantity in
the actual zig-zag wire.

4Alert readers may notice that ρdw ∼ −1.4 µΩ·cm is actually estimated at −1.8 µΩ·cm in
Ref. [58], which is probably due to errors in estimating ∆ρtot from the figures in that work.
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extreme and assume that ρdw is neglible, then by Eqn. A.3, the entire change in
resistance is due to AMR. This would yield a δdw ∼ 0.099 µm. Since there was no
direct confirmation of δdw in their wires, such a wide width cannot be dismissed
outright. In either case, assumptions about the magnetization distribution or the
DW resistivity are made which are difficult to assert without more experimental
evidence.

In general, this lack of knowledge about the true nature of the magnetization
distribution M(x) and/or the current path j(x) is what makes most of the recent
experiments difficult to interpret. Many of these experiments make strong assump-
tions about M(x) which can be of questionable validity, especially in mesoscale
devices where the shape anisotropy plays a much bigger role in the magnetization
as a whole. The problem is compounded by the fact that common methods of
characterizing micromagnetic distributions (e.g., magnetoforce microscopy (MFM)
and Lorentz microscopy) can only image a 2D projection with a resolution that is
generally insufficient for observing small deviations in the magnetization.

Despite this grim view of the analysis prospects of these experiments, a re-
cent experiment by Ebels et al. [59] seems to show concrete evidence for the ex-
istence of ρdw. In that experiment, the magnetization of long, narrow (35 nm)
electrodeposited Co wires was aligned preferentially along the wire axis due to
shape anisotropy. With a field applied along the wire axis and opposite to the
magnetization direction, they nucleated DWs which raised the resistance of the
wire. Since the DWs must consist of moments aligned perpendicular to the wire
axis and the current, there should be a contribution from ρ⊥ which lowers the
total resistance. This reduction in the resistance was clearly seen in slightly wider
(50 nm) wires, yet in the 35 nm wires the change was positive suggesting that
ρ⊥ > ∆ρAMR. Although it was impossible to image the wire being measured in
that work, the unambiguous positive sign is suggestive of scattering mechanisms
beyond AMR and provide a good starting point for future DW investigations.


